Image-Text-to-Text
Transformers
Safetensors
qwen2_5_vl
image-to-text
conversational
text-generation-inference
WaltonFuture nielsr HF Staff commited on
Commit
6170b13
·
verified ·
1 Parent(s): 50adb60

Improve model card with detailed description, usage, and additional info (#2)

Browse files

- Improve model card with detailed description, usage, and additional info (3fd865d73ae76b50c6eab25b60289e37c2dfd745)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +122 -3
README.md CHANGED
@@ -4,10 +4,129 @@ base_model:
4
  datasets:
5
  - WaltonFuture/Multimodal-Cold-Start
6
  - WaltonFuture/Multimodal-RL-Data
 
7
  license: apache-2.0
8
  pipeline_tag: image-text-to-text
9
- library_name: transformers
10
  ---
11
 
12
- * 🐙 **GitHub Repo:** [waltonfuture/RL-with-Cold-Start](https://github.com/waltonfuture/RL-with-Cold-Start)
13
- * 📜 **Paper (arXiv):** [Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start (arXiv:2505.22334)](https://arxiv.org/abs/2505.22334)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  datasets:
5
  - WaltonFuture/Multimodal-Cold-Start
6
  - WaltonFuture/Multimodal-RL-Data
7
+ library_name: transformers
8
  license: apache-2.0
9
  pipeline_tag: image-text-to-text
 
10
  ---
11
 
12
+ # Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
13
+
14
+ * 🐙 **GitHub Repo:** [waltonfuture/RL-with-Cold-Start](https://github.com/waltonfuture/RL-with-Cold-Start)
15
+ * 📜 **Paper (arXiv):** [Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start (arXiv:2505.22334)](https://arxiv.org/abs/2505.22334)
16
+
17
+ ## Introduction
18
+
19
+ This model is presented in the paper "Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start". We present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities.
20
+
21
+ Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3%→73.4% on MathVista, 62.9%→70.4% on We-Math) and our 3B model achieving performance competitive with several 7B models.
22
+
23
+ <div align=center>
24
+ <img src="https://huggingface.co/WaltonFuture/Qwen2.5VL-3b-RLCS/resolve/main/model_comparison.png" width = "80%" alt="Model Comparison" align=center/>
25
+ </div>
26
+
27
+ ### ✨ Key Highlights
28
+
29
+ * **Two-Stage Approach:** Combines Supervised Fine-Tuning (SFT) as a "cold start" for structured chain-of-thought reasoning with Reinforcement Learning (RL) via GRPO for further refinement.
30
+ * **Enhanced Multimodal Reasoning:** Consistently outperforms both SFT-only and RL-only methods on challenging multimodal reasoning benchmarks.
31
+ * **State-of-the-Art Performance:** Achieves SOTA performance among open-source MLLMs at both 3B and 7B scales.
32
+ * **Significant Improvements:** The 7B model shows substantial gains (e.g., 73.4% on MathVista, 70.4% on We-Math) over base models, while the 3B model is competitive with several 7B models.
33
+ * **Practical Guidance:** Provides practical insights for developing advanced multimodal reasoning models.
34
+
35
+ ## Sample Usage
36
+
37
+ You can easily load and use this model with the Hugging Face `transformers` library. Ensure you have `transformers` and `Pillow` installed.
38
+
39
+ ```bash
40
+ pip install transformers Pillow
41
+ ```
42
+
43
+ Below is an example demonstrating how to perform multimodal inference:
44
+
45
+ ```python
46
+ from transformers import AutoProcessor, AutoModelForCausalLM
47
+ from PIL import Image
48
+ import torch
49
+
50
+ # Load the model and processor
51
+ # Replace "WaltonFuture/Qwen2.5VL-3b-RLCS" with "WaltonFuture/Qwen2.5VL-7b-RLCS" for the 7B model.
52
+ model_id = "WaltonFuture/Qwen2.5VL-3b-RLCS"
53
+
54
+ processor = AutoProcessor.from_pretrained(model_id)
55
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto")
56
+
57
+ # Example image (replace with your image path or a PIL Image object)
58
+ # Make sure to provide a valid image path.
59
+ # For example, download an image locally:
60
+ # import requests
61
+ # from io import BytesIO
62
+ # image_url = "https://www.ilusionviajera.com/wp-content/uploads/2021/04/paris-eiffel-tower-in-spring.jpg"
63
+ # response = requests.get(image_url)
64
+ # image = Image.open(BytesIO(response.content)).convert("RGB")
65
+ image_path = "path/to/your/image.jpg" # Replace with your image path
66
+ image = Image.open(image_path).convert("RGB")
67
+
68
+ # Prepare the chat messages in the required multimodal format
69
+ messages = [
70
+ {
71
+ "role": "user",
72
+ "content": [
73
+ {"type": "image", "image": image},
74
+ {"type": "text", "text": "Describe this image in detail and answer any questions about it. For example, what is the main subject?"},
75
+ ],
76
+ }
77
+ ]
78
+
79
+ # Apply the model's chat template to format the input
80
+ text = processor.apply_chat_template(
81
+ messages,
82
+ tokenize=False,
83
+ add_generation_prompt=True
84
+ )
85
+
86
+ # Process the inputs (text and image) for the model
87
+ input_ids = processor(text=text, images=image, return_tensors="pt").input_ids.to(model.device)
88
+
89
+ # Generate the response
90
+ outputs = model.generate(input_ids=input_ids, max_new_tokens=512, do_sample=True, temperature=0.7)
91
+
92
+ # Decode the generated tokens to a human-readable response
93
+ response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
94
+
95
+ print(response)
96
+ ```
97
+
98
+ ## Data Access
99
+
100
+ Our two-stage datasets are now available on Hugging Face:
101
+
102
+ | Stage | Data |
103
+ | :------------ | :--------------------------------------------------------------------------------- |
104
+ | Cold Start | [Multimodal-Cold-Start](https://huggingface.co/datasets/WaltonFuture/Multimodal-Cold-Start) |
105
+ | RL | [Multimodal-RL-Data](https://huggingface.co/datasets/WaltonFuture/Multimodal-RL-Data) |
106
+
107
+ ## Model Access
108
+
109
+ Our models are now available on Hugging Face:
110
+
111
+ | Backbone | Our model |
112
+ | :------------- | :------------------------------------------------------------ |
113
+ | Qwen2.5-VL-7b | [Qwen2.5VL-7b-RL-with-Cold-Start](https://huggingface.co/WaltonFuture/Qwen2.5VL-7b-RLCS) |
114
+ | Qwen2.5-VL-3b | [Qwen2.5VL-3b-RL-with-Cold-Start](https://huggingface.co/WaltonFuture/Qwen2.5VL-3b-RLCS) |
115
+
116
+ ## Acknowledgment
117
+
118
+ Our models are built upon the amazing [Qwen2.5-VL](https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5) family.
119
+ We thank [EasyR1](https://github.com/hiyouga/EasyR1) and [ms-swift](https://github.com/modelscope/ms-swift) for their training codes.
120
+
121
+ ## Citation
122
+
123
+ If our work has been helpful to you, please consider citing it:
124
+
125
+ ```bibtex
126
+ @article{wei2025advancing,
127
+ title={Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start},
128
+ author={Wei, Lai and Li, Yuting and Zheng, Kaipeng and Wang, Chen and Wang, Yue and Kong, Linghe and Sun, Lichao and Huang, Weiran},
129
+ journal={arXiv preprint arXiv:2505.22334},
130
+ year={2025}
131
+ }
132
+ ```