--- library_name: peft base_model: Qwen/Qwen2.5-Coder-3B-Instruct-AWQ tags: - knowledge-distillation - code-generation - qwen - lora - distilled license: apache-2.0 --- # Qwen2.5-Coder-3B Distilled Model This is a **knowledge-distilled** version of Qwen2.5-Coder-3B-Instruct-AWQ, trained using knowledge distillation from Qwen2.5-Coder-7B-Instruct-AWQ. ## Model Details - **Base Model**: Qwen/Qwen2.5-Coder-3B-Instruct-AWQ - **Teacher Model**: Qwen/Qwen2.5-Coder-7B-Instruct-AWQ - **Training Method**: Knowledge Distillation with LoRA - **Best Validation Loss**: 1.9286 - **Training Time**: ~5 minutes - **Parameters Trained**: 14.9M (4.59% of base model) ## Training Configuration - **Temperature**: 2.0 (optimal) - **Alpha**: 0.95 (95% distillation weight) - **LoRA Rank**: 8 - **Target Modules**: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-Coder-3B-Instruct-AWQ", torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-3B-Instruct-AWQ") # Load distilled adapter model = PeftModel.from_pretrained(base_model, "Vinitha2004/qwen-coder-1.5B-Instruct-AWQ-t2") # Generate code input_text = "Original Code:\ndef add(a, b):\n return a + b\n\nUpdate Snippet:\n// ... existing code ...\ndef add(a: int, b: int) -> int:\n// ... existing code ...\n\nUpdated Code:\n" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ## Performance This distilled model retains the knowledge from the 7B teacher model while being significantly more efficient: - **Faster inference** (3B vs 7B parameters) - **Lower memory usage** - **Maintained code generation quality** ## Training Dataset Trained on 5000 code editing examples from custom dataset. ## Files - `adapter_config.json`: LoRA configuration - `adapter_model.safetensors`: Trained LoRA weights (59MB) - Other standard tokenizer files