--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer datasets: - VinitT/Cricket-Commentary-Sample model-index: - name: Commentary-qwen-3B results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: Qwen/Qwen2.5-3B-Instruct load_in_8bit: false load_in_4bit: true strict: false datasets: - path: VinitT/Cricket-Commentary-Sample type: alpaca dataset_prepared_path: val_set_size: 0 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: hub_model_id: Commentary-qwen-3B wandb_project: Cricket-Commentary-1 wandb_entity: wandb_watch: all wandb_name: Cricket-Commentary-1 wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine cosine_min_lr_ratio: 0.2 learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: false fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false #gpu_memory_limit: 20GiB #lora_on_cpu: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> ```

# Commentary-qwen-3B This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) on the VinitT/Cricket-Commentary-Sample dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0