Upload SearchMap Preview model with complete configuration
Browse files- 1_Pooling/config.json +10 -0
- README.md +141 -3
- config.json +39 -0
- config_sentence_transformers.json +9 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,141 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- embedding
|
5 |
+
- transformers
|
6 |
+
- search
|
7 |
+
- e-commerce
|
8 |
+
- conversational-search
|
9 |
+
- semantic-search
|
10 |
+
license: mit
|
11 |
+
pipeline_tag: feature-extraction
|
12 |
+
---
|
13 |
+
|
14 |
+
# VectorPath SearchMap: Conversational E-commerce Search Embedding Model
|
15 |
+
|
16 |
+
## Model Description
|
17 |
+
|
18 |
+
SearchMap is a specialized embedding model designed to revolutionize e-commerce search by making it more conversational and intuitive. Fine-tuned on the Stella Embed 400M v5 base model, it excels at understanding natural language queries and matching them with relevant products.
|
19 |
+
|
20 |
+
## Key Features
|
21 |
+
|
22 |
+
- Optimized for conversational e-commerce queries
|
23 |
+
- Handles complex, natural language search intents
|
24 |
+
- Supports multi-attribute product search
|
25 |
+
- Efficient 1024-dimensional embeddings (configurable up to 8192)
|
26 |
+
- Specialized for product and hotel search scenarios
|
27 |
+
|
28 |
+
## Model Details
|
29 |
+
|
30 |
+
- Base Model: Stella Embed 400M v5
|
31 |
+
- Embedding Dimensions: Configurable (512, 768, 1024, 2048, 4096, 6144, 8192)
|
32 |
+
- Training Data: 100,000+ e-commerce products across 32 categories
|
33 |
+
- License: MIT
|
34 |
+
- Framework: PyTorch / Sentence Transformers
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
|
38 |
+
### Using FlagEmbedding (Recommended)
|
39 |
+
|
40 |
+
```python
|
41 |
+
from FlagEmbedding import FlagModel
|
42 |
+
|
43 |
+
# Initialize the model
|
44 |
+
model = FlagModel(
|
45 |
+
'vectorpath/searchmap-v1',
|
46 |
+
query_instruction_for_retrieval="Generate a representation for this search query that can be used to retrieve related ecommerce products:",
|
47 |
+
use_fp16=True
|
48 |
+
)
|
49 |
+
|
50 |
+
# Encode queries
|
51 |
+
query = "A treat my dog and I can eat together"
|
52 |
+
query_embedding = model.encode(query)
|
53 |
+
|
54 |
+
# Encode products
|
55 |
+
product_description = "Organic peanut butter dog treats, safe for human consumption..."
|
56 |
+
product_embedding = model.encode(product_description)
|
57 |
+
```
|
58 |
+
|
59 |
+
### Using with FAISS for Vector Search
|
60 |
+
|
61 |
+
```python
|
62 |
+
import numpy as np
|
63 |
+
import faiss
|
64 |
+
|
65 |
+
# Create FAISS index
|
66 |
+
embedding_dimension = 1024 # or your chosen dimension
|
67 |
+
index = faiss.IndexFlatL2(embedding_dimension)
|
68 |
+
|
69 |
+
# Add product embeddings
|
70 |
+
product_embeddings = model.encode(product_descriptions)
|
71 |
+
index.add(np.array(product_embeddings).astype('float32'))
|
72 |
+
|
73 |
+
# Search
|
74 |
+
query_embedding = model.encode(query)
|
75 |
+
distances, indices = index.search(
|
76 |
+
np.array([query_embedding]).astype('float32'),
|
77 |
+
k=10
|
78 |
+
)
|
79 |
+
```
|
80 |
+
|
81 |
+
### Example Search Queries
|
82 |
+
|
83 |
+
The model excels at understanding natural language queries like:
|
84 |
+
- "A treat my dog and I can eat together"
|
85 |
+
- "Lightweight waterproof hiking backpack for summer trails"
|
86 |
+
- "Eco-friendly kitchen gadgets for a small apartment"
|
87 |
+
- "Comfortable shoes for standing all day at work"
|
88 |
+
|
89 |
+
## Performance and Limitations
|
90 |
+
|
91 |
+
### Strengths
|
92 |
+
- Excellent at understanding conversational and natural language queries
|
93 |
+
- Strong performance in e-commerce and hotel search scenarios
|
94 |
+
- Handles complex multi-attribute queries
|
95 |
+
- Efficient computation with configurable embedding dimensions
|
96 |
+
|
97 |
+
### Current Limitations
|
98 |
+
- May not fully prioritize weighted terms in queries
|
99 |
+
- Limited handling of slang and colloquial language
|
100 |
+
- Regional language variations might need fine-tuning
|
101 |
+
|
102 |
+
## Training Details
|
103 |
+
|
104 |
+
The model was trained using:
|
105 |
+
- Supervised learning with FlagEmbedding
|
106 |
+
- 100,000+ product dataset across 32 categories
|
107 |
+
- AI-generated conversational search queries
|
108 |
+
- Positive and negative product examples for contrast learning
|
109 |
+
|
110 |
+
## Intended Use
|
111 |
+
|
112 |
+
This model is designed for:
|
113 |
+
- E-commerce product search and recommendations
|
114 |
+
- Hotel and accommodation search
|
115 |
+
- Product catalog vectorization
|
116 |
+
- Semantic similarity matching
|
117 |
+
- Query understanding and intent detection
|
118 |
+
|
119 |
+
## Citation
|
120 |
+
|
121 |
+
If you use this model in your research, please cite:
|
122 |
+
|
123 |
+
```bibtex
|
124 |
+
@misc{vectorpath2025searchmap,
|
125 |
+
title={SearchMap: Conversational E-commerce Search Embedding Model},
|
126 |
+
author={VectorPath Research Team},
|
127 |
+
year={2025},
|
128 |
+
publisher={Hugging Face},
|
129 |
+
journal={HuggingFace Model Hub},
|
130 |
+
}
|
131 |
+
```
|
132 |
+
|
133 |
+
## Contact and Community
|
134 |
+
|
135 |
+
- Discord Community: [Join our Discord]
|
136 |
+
- GitHub Issues: Report bugs and feature requests
|
137 |
+
- Email: [Contact Email]
|
138 |
+
|
139 |
+
## License
|
140 |
+
|
141 |
+
This model is released under the MIT License. See the LICENSE file for more details.
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./saved_model/checkpoint-21660",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration.NewConfig",
|
9 |
+
"AutoModel": "modeling.NewModel"
|
10 |
+
},
|
11 |
+
"classifier_dropout": null,
|
12 |
+
"hidden_act": "gelu",
|
13 |
+
"hidden_dropout_prob": 0.1,
|
14 |
+
"hidden_size": 1024,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"layer_norm_eps": 1e-12,
|
18 |
+
"layer_norm_type": "layer_norm",
|
19 |
+
"logn_attention_clip1": false,
|
20 |
+
"logn_attention_scale": false,
|
21 |
+
"max_position_embeddings": 8192,
|
22 |
+
"model_type": "new",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pack_qkv": true,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"position_embedding_type": "rope",
|
28 |
+
"rope_scaling": {
|
29 |
+
"factor": 2.0,
|
30 |
+
"type": "ntk"
|
31 |
+
},
|
32 |
+
"rope_theta": 160000,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.42.4",
|
35 |
+
"type_vocab_size": 2,
|
36 |
+
"unpad_inputs": true,
|
37 |
+
"use_memory_efficient_attention": true,
|
38 |
+
"vocab_size": 30528
|
39 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.7.0",
|
4 |
+
"transformers": "4.42.4",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78f8474dad9b263d78420f3e1cc540d6160c32539f946feefe90727806fbf934
|
3 |
+
size 1736585680
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 8000,
|
50 |
+
"model_max_length": 32768,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|