Text Generation
Transformers
GGUF
English
esper
esper-3
valiant
valiant-labs
qwen
qwen-3
qwen-3-8b
8b
reasoning
code
code-instruct
python
javascript
dev-ops
jenkins
terraform
scripting
powershell
azure
aws
gcp
cloud
problem-solving
architect
engineer
developer
creative
analytical
expert
rationality
conversational
chat
instruct
llama-cpp
gguf-my-repo
File size: 2,697 Bytes
2e0a879 baea79b 2e0a879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- esper
- esper-3
- valiant
- valiant-labs
- qwen
- qwen-3
- qwen-3-8b
- 8b
- reasoning
- code
- code-instruct
- python
- javascript
- dev-ops
- jenkins
- terraform
- scripting
- powershell
- azure
- aws
- gcp
- cloud
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- chat
- instruct
- llama-cpp
- gguf-my-repo
base_model: ValiantLabs/Qwen3-8B-Esper3
datasets:
- sequelbox/Titanium2.1-DeepSeek-R1
- sequelbox/Tachibana2-DeepSeek-R1
- sequelbox/Raiden-DeepSeek-R1
license: apache-2.0
---
# Triangle104/Qwen3-8B-Esper3-Q5_K_S-GGUF
This model was converted to GGUF format from [`ValiantLabs/Qwen3-8B-Esper3`](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3) for more details on the model.
---
Esper 3 is a coding, architecture, and DevOps reasoning specialist built on Qwen 3.
- Finetuned on our DevOps and architecture reasoning and code reasoning data generated with Deepseek R1!
- Improved general and creative reasoning to supplement problem-solving and general chat performance.
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference!
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Qwen3-8B-Esper3-Q5_K_S-GGUF --hf-file qwen3-8b-esper3-q5_k_s.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Qwen3-8B-Esper3-Q5_K_S-GGUF --hf-file qwen3-8b-esper3-q5_k_s.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Qwen3-8B-Esper3-Q5_K_S-GGUF --hf-file qwen3-8b-esper3-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Qwen3-8B-Esper3-Q5_K_S-GGUF --hf-file qwen3-8b-esper3-q5_k_s.gguf -c 2048
```
|