# 🦙 Fino1-8B – Fine-Tuned Llama 3.1 8B Instruct **Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[specific task/domain]**. This model has been trained using **supervised fine-tuning (SFT)** on **[dataset name]**, enhancing its capabilities in **[use cases such as medical Q&A, legal text summarization, SQL generation, etc.]**. ## 📌 Model Details - **Model Name**: `Fino1-8B` - **Base Model**: `Meta Llama 3.1 8B Instruct` - **Fine-Tuned On**: `[Dataset Name(s)]` - **Training Method**: Supervised Fine-Tuning (SFT) *(mention if RLHF or other techniques were used)* - **Objective**: `[Enhance performance on specific tasks such as...]` - **Tokenizer**: Inherited from `Llama 3.1 8B Instruct` ## 🚀 Capabilities - ✅ **[Capability 1]** (e.g., improved response accuracy for medical questions) - ✅ **[Capability 2]** (e.g., better SQL query generation for structured databases) - ✅ **[Capability 3]** (e.g., more context-aware completions for long-form text) ## 📊 Training Configuration - **Training Hardware**: `GPU: [e.g., 8x A100, H100]` - **Batch Size**: `[e.g., 16]` - **Learning Rate**: `[e.g., 2e-5]` - **Epochs**: `[e.g., 3]` - **Optimizer**: `[e.g., AdamW, LAMB]` ## 🔧 Usage To use `Fino1-8B` with Hugging Face's `transformers` library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "your-huggingface-username/Fino1-8B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) input_text = "What are the symptoms of gout?" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(output[0], skip_special_tokens=True))