Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,18 @@
|
|
1 |
-
# π¦ Fino1-8B
|
2 |
|
3 |
-
**Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[
|
4 |
|
5 |
## π Model Details
|
6 |
- **Model Name**: `Fino1-8B`
|
7 |
- **Base Model**: `Meta Llama 3.1 8B Instruct`
|
8 |
-
- **Fine-Tuned On**: `
|
9 |
-
- **Training Method**:
|
10 |
-
- **Objective**: `[Enhance performance on specific tasks such as
|
11 |
- **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
|
12 |
|
13 |
-
## π Capabilities
|
14 |
-
- β
**[Capability 1]** (e.g., improved response accuracy for medical questions)
|
15 |
-
- β
**[Capability 2]** (e.g., better SQL query generation for structured databases)
|
16 |
-
- β
**[Capability 3]** (e.g., more context-aware completions for long-form text)
|
17 |
|
18 |
## π Training Configuration
|
19 |
-
- **Training Hardware**: `GPU: [e.g.,
|
20 |
- **Batch Size**: `[e.g., 16]`
|
21 |
- **Learning Rate**: `[e.g., 2e-5]`
|
22 |
- **Epochs**: `[e.g., 3]`
|
@@ -28,12 +24,12 @@ To use `Fino1-8B` with Hugging Face's `transformers` library:
|
|
28 |
```python
|
29 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
30 |
|
31 |
-
model_name = "
|
32 |
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
35 |
|
36 |
-
input_text = "What
|
37 |
inputs = tokenizer(input_text, return_tensors="pt")
|
38 |
|
39 |
output = model.generate(**inputs, max_new_tokens=200)
|
|
|
1 |
+
# π¦ Fino1-8B
|
2 |
|
3 |
+
**Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
|
4 |
|
5 |
## π Model Details
|
6 |
- **Model Name**: `Fino1-8B`
|
7 |
- **Base Model**: `Meta Llama 3.1 8B Instruct`
|
8 |
+
- **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA` Derived from FinQA dataset.
|
9 |
+
- **Training Method**: SFT and RF
|
10 |
+
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
|
11 |
- **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
|
12 |
|
|
|
|
|
|
|
|
|
13 |
|
14 |
## π Training Configuration
|
15 |
+
- **Training Hardware**: `GPU: [e.g., 4xH100]`
|
16 |
- **Batch Size**: `[e.g., 16]`
|
17 |
- **Learning Rate**: `[e.g., 2e-5]`
|
18 |
- **Epochs**: `[e.g., 3]`
|
|
|
24 |
```python
|
25 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
|
27 |
+
model_name = "TheFinAI/Fino1-8B"
|
28 |
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
31 |
|
32 |
+
input_text = "What is the results of 3-5?"
|
33 |
inputs = tokenizer(input_text, return_tensors="pt")
|
34 |
|
35 |
output = model.generate(**inputs, max_new_tokens=200)
|