Text Generation
Safetensors
English
llama
conversational
lfqian commited on
Commit
351889c
Β·
verified Β·
1 Parent(s): 5413c84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -12
README.md CHANGED
@@ -1,22 +1,18 @@
1
- # πŸ¦™ Fino1-8B – Fine-Tuned Llama 3.1 8B Instruct
2
 
3
- **Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[specific task/domain]**. This model has been trained using **supervised fine-tuning (SFT)** on **[dataset name]**, enhancing its capabilities in **[use cases such as medical Q&A, legal text summarization, SQL generation, etc.]**.
4
 
5
  ## πŸ“Œ Model Details
6
  - **Model Name**: `Fino1-8B`
7
  - **Base Model**: `Meta Llama 3.1 8B Instruct`
8
- - **Fine-Tuned On**: `[Dataset Name(s)]`
9
- - **Training Method**: Supervised Fine-Tuning (SFT) *(mention if RLHF or other techniques were used)*
10
- - **Objective**: `[Enhance performance on specific tasks such as...]`
11
  - **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
12
 
13
- ## πŸš€ Capabilities
14
- - βœ… **[Capability 1]** (e.g., improved response accuracy for medical questions)
15
- - βœ… **[Capability 2]** (e.g., better SQL query generation for structured databases)
16
- - βœ… **[Capability 3]** (e.g., more context-aware completions for long-form text)
17
 
18
  ## πŸ“Š Training Configuration
19
- - **Training Hardware**: `GPU: [e.g., 8x A100, H100]`
20
  - **Batch Size**: `[e.g., 16]`
21
  - **Learning Rate**: `[e.g., 2e-5]`
22
  - **Epochs**: `[e.g., 3]`
@@ -28,12 +24,12 @@ To use `Fino1-8B` with Hugging Face's `transformers` library:
28
  ```python
29
  from transformers import AutoModelForCausalLM, AutoTokenizer
30
 
31
- model_name = "your-huggingface-username/Fino1-8B"
32
 
33
  tokenizer = AutoTokenizer.from_pretrained(model_name)
34
  model = AutoModelForCausalLM.from_pretrained(model_name)
35
 
36
- input_text = "What are the symptoms of gout?"
37
  inputs = tokenizer(input_text, return_tensors="pt")
38
 
39
  output = model.generate(**inputs, max_new_tokens=200)
 
1
+ # πŸ¦™ Fino1-8B
2
 
3
+ **Fino1-8B** is a fine-tuned version of **Llama 3.1 8B Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**.
4
 
5
  ## πŸ“Œ Model Details
6
  - **Model Name**: `Fino1-8B`
7
  - **Base Model**: `Meta Llama 3.1 8B Instruct`
8
+ - **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA` Derived from FinQA dataset.
9
+ - **Training Method**: SFT and RF
10
+ - **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
11
  - **Tokenizer**: Inherited from `Llama 3.1 8B Instruct`
12
 
 
 
 
 
13
 
14
  ## πŸ“Š Training Configuration
15
+ - **Training Hardware**: `GPU: [e.g., 4xH100]`
16
  - **Batch Size**: `[e.g., 16]`
17
  - **Learning Rate**: `[e.g., 2e-5]`
18
  - **Epochs**: `[e.g., 3]`
 
24
  ```python
25
  from transformers import AutoModelForCausalLM, AutoTokenizer
26
 
27
+ model_name = "TheFinAI/Fino1-8B"
28
 
29
  tokenizer = AutoTokenizer.from_pretrained(model_name)
30
  model = AutoModelForCausalLM.from_pretrained(model_name)
31
 
32
+ input_text = "What is the results of 3-5?"
33
  inputs = tokenizer(input_text, return_tensors="pt")
34
 
35
  output = model.generate(**inputs, max_new_tokens=200)