Text Generation
Safetensors
English
qwen2
conversational
lfqian commited on
Commit
3204adb
·
verified ·
1 Parent(s): 4baee7e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - TheFinAI/Fino1_Reasoning_Path_FinQA_v2
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-14B-Instruct
9
+ pipeline_tag: text-generation
10
+ ---
11
+ # 🦙 Fino1-14B
12
+
13
+ **Fino1-14B** is a fine-tuned version of **Qwen2.5-14B-Instruct**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA_v2**, enhancing its capabilities in **financial reasoning tasks**.
14
+ Check our paper arxiv.org/abs/2502.08127 for more details.
15
+
16
+ ## 📌 Model Details
17
+ - **Model Name**: `Fino1-14B`
18
+ - **Base Model**: `Qwen2.5-14B-Instruct`
19
+ - **Fine-Tuned On**: `TheFinAI/Fino1_Reasoning_Path_FinQA_v2` Derived from multiple financial dataset.
20
+ - **Training Method**: SFT and RF
21
+ - **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]`
22
+ - **Tokenizer**: Inherited from `Qwen/Qwen2.5-14B-Instruct`
23
+
24
+
25
+ ## 📊 Training Configuration
26
+ - **Training Hardware**: `GPU: [e.g., 4xH100]`
27
+ - **Batch Size**: `[e.g., 16]`
28
+ - **Learning Rate**: `[e.g., 2e-5]`
29
+ - **Epochs**: `[e.g., 3]`
30
+ - **Optimizer**: `[e.g., AdamW, LAMB]`
31
+
32
+ ## 🔧 Usage
33
+ To use `Fino1-14B` with Hugging Face's `transformers` library:
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ model_name = "TheFinAI/Fino1-14B"
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
41
+ model = AutoModelForCausalLM.from_pretrained(model_name)
42
+
43
+ input_text = "What is the results of 3-5?"
44
+ inputs = tokenizer(input_text, return_tensors="pt")
45
+
46
+ output = model.generate(**inputs, max_new_tokens=200)
47
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
48
+ ```
49
+
50
+ ## 💡 Citation
51
+
52
+ If you use this model in your research, please cite:
53
+ ```python
54
+ @article{qian2025fino1,
55
+ title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance},
56
+ author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian},
57
+ journal={arXiv preprint arXiv:2502.08127},
58
+ year={2025}
59
+ }