File size: 7,017 Bytes
84be1c7
03acb7c
 
 
 
 
 
84be1c7
03acb7c
 
 
d8efefa
03acb7c
 
 
 
 
c18696c
 
d8efefa
 
03acb7c
 
 
 
 
 
 
 
 
3a66857
03acb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8efefa
 
 
03acb7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
language:
  - en
tags:
  - causal-lm
  - llama
inference: false
---

# Wizard-Vicuna-13B-GPTQ

This repo contains 4bit GPTQ format quantised models of  [junelee's wizard-vicuna 13B](https://huggingface.co/junelee/wizard-vicuna-13b).

It is the result of quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).

## Repositories available

* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-GGML).
* [float16 HF format model for GPU inference](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF).
 
## How to easily download and use this model in text-generation-webui

Open the text-generation-webui UI as normal.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/wizard-vicuna-13B-GPTQ`.
3. Click **Download**.
4. Wait until it says it's finished downloading.
5. Click the **Refresh** icon next to **Model** in the top left.
6. In the **Model drop-down**: choose the model you just downloaded, `wizard-vicuna-13B-GPTQ`.
7. If you see an error in the bottom right, ignore it - it's temporary.
8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
9. Click **Save settings for this model** in the top right.
10. Click **Reload the Model** in the top right.
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!

## Provided files

**Compatible file - stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors**

In the `main` branch - the default one - you will find `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`

This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility

It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui.

* `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors`
  * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
  * Works with text-generation-webui one-click-installers
  * Parameters: Groupsize = 128g. No act-order.
  * Command used to create the GPTQ:
    ```
    CUDA_VISIBLE_DEVICES=0 python3 llama.py wizard-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors
    ```
   
# Original WizardVicuna-13B model card

Github page: https://github.com/melodysdreamj/WizardVicunaLM

# WizardVicunaLM
### Wizard's dataset + ChatGPT's conversation extension + Vicuna's tuning method
I am a big fan of the ideas behind WizardLM and VicunaLM. I particularly like the idea of WizardLM handling the dataset itself more deeply and broadly, as well as VicunaLM overcoming the limitations of single-turn conversations by introducing multi-round conversations. As a result, I combined these two ideas to create WizardVicunaLM. This project is highly experimental and designed for proof of concept, not for actual usage.


## Benchmark
### Approximately 7% performance improvement over VicunaLM
![](https://user-images.githubusercontent.com/21379657/236088663-3fa212c9-0112-4d44-9b01-f16ea093cb67.png)


### Detail 

The questions presented here are not from rigorous tests, but rather, I asked a few questions and requested GPT-4 to score them. The models compared were ChatGPT 3.5, WizardVicunaLM, VicunaLM, and WizardLM, in that order.

|     | gpt3.5 | wizard-vicuna-13b | vicuna-13b | wizard-7b | link     |
|-----|--------|-------------------|------------|-----------|----------|
| Q1  | 95     | 90                | 85         | 88        | [link](https://sharegpt.com/c/YdhIlby) |
| Q2  | 95     | 97                | 90         | 89        | [link](https://sharegpt.com/c/YOqOV4g) |
| Q3  | 85     | 90                | 80         | 65        | [link](https://sharegpt.com/c/uDmrcL9) |
| Q4  | 90     | 85                | 80         | 75        | [link](https://sharegpt.com/c/XBbK5MZ) |
| Q5  | 90     | 85                | 80         | 75        | [link](https://sharegpt.com/c/AQ5tgQX) |
| Q6  | 92     | 85                | 87         | 88        | [link](https://sharegpt.com/c/eVYwfIr) |
| Q7  | 95     | 90                | 85         | 92        | [link](https://sharegpt.com/c/Kqyeub4) |
| Q8  | 90     | 85                | 75         | 70        | [link](https://sharegpt.com/c/M0gIjMF) |
| Q9  | 92     | 85                | 70         | 60        | [link](https://sharegpt.com/c/fOvMtQt) |
| Q10 | 90     | 80                | 75         | 85        | [link](https://sharegpt.com/c/YYiCaUz) |
| Q11 | 90     | 85                | 75         | 65        | [link](https://sharegpt.com/c/HMkKKGU) |
| Q12 | 85     | 90                | 80         | 88        | [link](https://sharegpt.com/c/XbW6jgB) |
| Q13 | 90     | 95                | 88         | 85        | [link](https://sharegpt.com/c/JXZb7y6) |
| Q14 | 94     | 89                | 90         | 91        | [link](https://sharegpt.com/c/cTXH4IS) |
| Q15 | 90     | 85                | 88         | 87        | [link](https://sharegpt.com/c/GZiM0Yt) |
|     | 91     | 88                | 82         | 80        |          |


## Principle

We adopted the approach of WizardLM, which is to extend a single problem more in-depth. However, instead of using individual instructions, we expanded it using Vicuna's conversation format and applied Vicuna's fine-tuning techniques.

Turning a single command into a rich conversation is what we've done [here](https://sharegpt.com/c/6cmxqq0).

After creating the training data, I later trained it according to the Vicuna v1.1 [training method](https://github.com/lm-sys/FastChat/blob/main/scripts/train_vicuna_13b.sh).


## Detailed Method

First, we explore and expand various areas in the same topic using the 7K conversations created by WizardLM. However, we made it in a continuous conversation format instead of the instruction format. That is, it starts with WizardLM's instruction, and then expands into various areas in one conversation using ChatGPT 3.5.

After that, we applied the following model using Vicuna's fine-tuning format.

## Training Process

Trained with 8 A100 GPUs for 35 hours.

## Weights
You can see the [dataset](https://huggingface.co/datasets/junelee/wizard_vicuna_70k) we used for training and the [13b model](https://huggingface.co/junelee/wizard-vicuna-13b) in the huggingface.

## Conclusion
If we extend the conversation to gpt4 32K, we can expect a dramatic improvement, as we can generate 8x more, more accurate and richer conversations.

## License
The model is licensed under the LLaMA model, and the dataset is licensed under the terms of OpenAI because it uses ChatGPT. Everything else is free.

## Author

[JUNE LEE](https://github.com/melodysdreamj) - He is active in Songdo Artificial Intelligence Study and GDG Songdo.