TheBloke commited on
Commit
849f203
·
1 Parent(s): c967caf

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -15
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - Open-Orca/OpenOrca
4
  - garage-bAInd/Open-Platypus
@@ -9,10 +10,21 @@ language:
9
  library_name: transformers
10
  license: llama2
11
  model_creator: Jiangwen Su
12
- model_link: https://huggingface.co/uukuguy/speechless-llama2-13b
13
  model_name: Speechless Llama2 13B
14
  model_type: llama
15
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
16
  quantized_by: TheBloke
17
  tags:
18
  - facebook
@@ -54,9 +66,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
54
  <!-- repositories-available start -->
55
  ## Repositories available
56
 
 
57
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ)
58
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GGUF)
59
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GGML)
60
  * [Jiangwen Su's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/uukuguy/speechless-llama2-13b)
61
  <!-- repositories-available end -->
62
 
@@ -75,6 +87,7 @@ Below is an instruction that describes a task. Write a response that appropriate
75
 
76
  <!-- prompt-template end -->
77
 
 
78
  <!-- README_GPTQ.md-provided-files start -->
79
  ## Provided files and GPTQ parameters
80
 
@@ -99,20 +112,20 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
99
 
100
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
101
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
102
- | [main](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
103
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
104
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
105
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
106
 
107
  <!-- README_GPTQ.md-provided-files end -->
108
 
109
  <!-- README_GPTQ.md-download-from-branches start -->
110
  ## How to download from branches
111
 
112
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Speechless-Llama2-13B-GPTQ:gptq-4bit-32g-actorder_True`
113
  - With Git, you can clone a branch with:
114
  ```
115
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ
116
  ```
117
  - In Python Transformers code, the branch is the `revision` parameter; see below.
118
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -125,7 +138,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
125
 
126
  1. Click the **Model tab**.
127
  2. Under **Download custom model or LoRA**, enter `TheBloke/Speechless-Llama2-13B-GPTQ`.
128
- - To download from a specific branch, enter for example `TheBloke/Speechless-Llama2-13B-GPTQ:gptq-4bit-32g-actorder_True`
129
  - see Provided Files above for the list of branches for each option.
130
  3. Click **Download**.
131
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -173,10 +186,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
173
 
174
  model_name_or_path = "TheBloke/Speechless-Llama2-13B-GPTQ"
175
  # To use a different branch, change revision
176
- # For example: revision="gptq-4bit-32g-actorder_True"
177
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
178
- torch_dtype=torch.float16,
179
  device_map="auto",
 
180
  revision="main")
181
 
182
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -194,7 +207,7 @@ prompt_template=f'''Below is an instruction that describes a task. Write a respo
194
  print("\n\n*** Generate:")
195
 
196
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
197
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
198
  print(tokenizer.decode(output[0]))
199
 
200
  # Inference can also be done using transformers' pipeline
@@ -205,9 +218,11 @@ pipe = pipeline(
205
  model=model,
206
  tokenizer=tokenizer,
207
  max_new_tokens=512,
 
208
  temperature=0.7,
209
  top_p=0.95,
210
- repetition_penalty=1.15
 
211
  )
212
 
213
  print(pipe(prompt_template)[0]['generated_text'])
@@ -232,10 +247,12 @@ For further support, and discussions on these models and AI in general, join us
232
 
233
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
234
 
235
- ## Thanks, and how to contribute.
236
 
237
  Thanks to the [chirper.ai](https://chirper.ai) team!
238
 
 
 
239
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
240
 
241
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -247,7 +264,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
247
 
248
  **Special thanks to**: Aemon Algiz.
249
 
250
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
251
 
252
 
253
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/uukuguy/speechless-llama2-13b
3
  datasets:
4
  - Open-Orca/OpenOrca
5
  - garage-bAInd/Open-Platypus
 
10
  library_name: transformers
11
  license: llama2
12
  model_creator: Jiangwen Su
 
13
  model_name: Speechless Llama2 13B
14
  model_type: llama
15
  pipeline_tag: text-generation
16
+ prompt_template: 'Below is an instruction that describes a task. Write a response
17
+ that appropriately completes the request.
18
+
19
+
20
+ ### Instruction:
21
+
22
+ {prompt}
23
+
24
+
25
+ ### Response:
26
+
27
+ '
28
  quantized_by: TheBloke
29
  tags:
30
  - facebook
 
66
  <!-- repositories-available start -->
67
  ## Repositories available
68
 
69
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Speechless-Llama2-13B-AWQ)
70
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ)
71
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GGUF)
 
72
  * [Jiangwen Su's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/uukuguy/speechless-llama2-13b)
73
  <!-- repositories-available end -->
74
 
 
87
 
88
  <!-- prompt-template end -->
89
 
90
+
91
  <!-- README_GPTQ.md-provided-files start -->
92
  ## Provided files and GPTQ parameters
93
 
 
112
 
113
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
114
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
115
+ | [main](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
116
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
117
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
118
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
119
 
120
  <!-- README_GPTQ.md-provided-files end -->
121
 
122
  <!-- README_GPTQ.md-download-from-branches start -->
123
  ## How to download from branches
124
 
125
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Speechless-Llama2-13B-GPTQ:main`
126
  - With Git, you can clone a branch with:
127
  ```
128
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Speechless-Llama2-13B-GPTQ
129
  ```
130
  - In Python Transformers code, the branch is the `revision` parameter; see below.
131
  <!-- README_GPTQ.md-download-from-branches end -->
 
138
 
139
  1. Click the **Model tab**.
140
  2. Under **Download custom model or LoRA**, enter `TheBloke/Speechless-Llama2-13B-GPTQ`.
141
+ - To download from a specific branch, enter for example `TheBloke/Speechless-Llama2-13B-GPTQ:main`
142
  - see Provided Files above for the list of branches for each option.
143
  3. Click **Download**.
144
  4. The model will start downloading. Once it's finished it will say "Done".
 
186
 
187
  model_name_or_path = "TheBloke/Speechless-Llama2-13B-GPTQ"
188
  # To use a different branch, change revision
189
+ # For example: revision="main"
190
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
191
  device_map="auto",
192
+ trust_remote_code=False,
193
  revision="main")
194
 
195
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
207
  print("\n\n*** Generate:")
208
 
209
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
210
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
211
  print(tokenizer.decode(output[0]))
212
 
213
  # Inference can also be done using transformers' pipeline
 
218
  model=model,
219
  tokenizer=tokenizer,
220
  max_new_tokens=512,
221
+ do_sample=True,
222
  temperature=0.7,
223
  top_p=0.95,
224
+ top_k=40,
225
+ repetition_penalty=1.1
226
  )
227
 
228
  print(pipe(prompt_template)[0]['generated_text'])
 
247
 
248
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
249
 
250
+ ## Thanks, and how to contribute
251
 
252
  Thanks to the [chirper.ai](https://chirper.ai) team!
253
 
254
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
255
+
256
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
257
 
258
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
264
 
265
  **Special thanks to**: Aemon Algiz.
266
 
267
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
268
 
269
 
270
  Thank you to all my generous patrons and donaters!