Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,151 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
## Uses
|
7 |
|
8 |
+
```python
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from transformers import Qwen2ForCausalLM, AutoTokenizer
|
12 |
+
class ValueHead(nn.Module):
|
13 |
+
r"""
|
14 |
+
The ValueHead class implements a head for GPT2 that returns a scalar for each output token.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, config, **kwargs):
|
18 |
+
super().__init__()
|
19 |
+
if not hasattr(config, "summary_dropout_prob"):
|
20 |
+
summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
|
21 |
+
else:
|
22 |
+
summary_dropout_prob = config.summary_dropout_prob
|
23 |
+
|
24 |
+
self.dropout = (
|
25 |
+
nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()
|
26 |
+
)
|
27 |
+
|
28 |
+
# some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
|
29 |
+
if hasattr(config, "hidden_size"):
|
30 |
+
hidden_size = config.hidden_size
|
31 |
+
if hasattr(config, "word_embed_proj_dim"):
|
32 |
+
hidden_size = config.word_embed_proj_dim
|
33 |
+
elif hasattr(config, "is_encoder_decoder"):
|
34 |
+
if config.is_encoder_decoder and hasattr(config, "decoder"):
|
35 |
+
if hasattr(config.decoder, "hidden_size"):
|
36 |
+
hidden_size = config.decoder.hidden_size
|
37 |
+
|
38 |
+
self.summary = nn.Linear(hidden_size, 1)
|
39 |
+
|
40 |
+
self.flatten = nn.Flatten()
|
41 |
+
|
42 |
+
def forward(self, hidden_states):
|
43 |
+
output = self.dropout(hidden_states)
|
44 |
+
|
45 |
+
# For now force upcast in fp32 if needed. Let's keep the
|
46 |
+
# output in fp32 for numerical stability.
|
47 |
+
if output.dtype != self.summary.weight.dtype:
|
48 |
+
output = output.to(self.summary.weight.dtype)
|
49 |
+
|
50 |
+
output = self.summary(output)
|
51 |
+
return output
|
52 |
+
|
53 |
+
|
54 |
+
class Qwen2ForCausalRM(Qwen2ForCausalLM):
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__(config)
|
57 |
+
self.v_head = ValueHead(config)
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
input_ids=None,
|
62 |
+
past_key_values=None,
|
63 |
+
attention_mask=None,
|
64 |
+
return_past_key_values=False,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
r"""
|
68 |
+
Applies a forward pass to the wrapped model and returns the logits of the value head.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
72 |
+
Indices of input sequence tokens in the vocabulary.
|
73 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, `optional`):
|
74 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
75 |
+
(see `past_key_values` input) to speed up sequential decoding.
|
76 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, `optional`):
|
77 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
78 |
+
- 1 for tokens that are **not masked**,
|
79 |
+
- 0 for tokens that are **masked**.
|
80 |
+
return_past_key_values (bool): A flag indicating if the computed hidden-states should be returned.
|
81 |
+
kwargs (`dict`, `optional`):
|
82 |
+
Additional keyword arguments, that are passed to the wrapped model.
|
83 |
+
"""
|
84 |
+
kwargs["output_hidden_states"] = (
|
85 |
+
True # this had already been set in the LORA / PEFT examples
|
86 |
+
)
|
87 |
+
kwargs["past_key_values"] = past_key_values
|
88 |
+
|
89 |
+
# if (
|
90 |
+
# self.is_peft_model
|
91 |
+
# and
|
92 |
+
# self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING"
|
93 |
+
# ):
|
94 |
+
# kwargs.pop("past_key_values")
|
95 |
+
|
96 |
+
base_model_output = super().forward(
|
97 |
+
input_ids=input_ids,
|
98 |
+
attention_mask=attention_mask,
|
99 |
+
**kwargs,
|
100 |
+
)
|
101 |
+
|
102 |
+
last_hidden_state = base_model_output.hidden_states[-1]
|
103 |
+
lm_logits = base_model_output.logits
|
104 |
+
loss = base_model_output.loss
|
105 |
+
|
106 |
+
if last_hidden_state.device != self.v_head.summary.weight.device:
|
107 |
+
last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device)
|
108 |
+
|
109 |
+
value = self.v_head(last_hidden_state).squeeze(-1)
|
110 |
+
|
111 |
+
# force upcast in fp32 if logits are in half-precision
|
112 |
+
if lm_logits.dtype != torch.float32:
|
113 |
+
lm_logits = lm_logits.float()
|
114 |
+
|
115 |
+
if return_past_key_values:
|
116 |
+
return (lm_logits, loss, value, base_model_output.past_key_values)
|
117 |
+
else:
|
118 |
+
return (lm_logits, loss, value)
|
119 |
+
|
120 |
+
model_path = "CodeDPO/qwen_coder_2.5_rm"
|
121 |
+
model = Qwen2ForCausalRM.from_pretrained(model_path, device_map="auto")
|
122 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
123 |
+
input_chat = [
|
124 |
+
{"role": "user", "content": "Hello, how are you?"},
|
125 |
+
{
|
126 |
+
"role": "assistant",
|
127 |
+
"content": "I'm doing great. How can I help you today?",
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"role": "user",
|
131 |
+
"content": "I'd like to show off how chat templating works!",
|
132 |
+
},
|
133 |
+
]
|
134 |
+
input_tokens = tokenizer.apply_chat_template(
|
135 |
+
input_chat,
|
136 |
+
tokenize=True,
|
137 |
+
return_dict=True,
|
138 |
+
padding=True,
|
139 |
+
return_tensors="pt",
|
140 |
+
).to(model.device)
|
141 |
+
_, _, values = model(
|
142 |
+
**input_tokens,
|
143 |
+
output_hidden_states=True,
|
144 |
+
return_dict=True,
|
145 |
+
use_cache=False,
|
146 |
+
)
|
147 |
+
masks = input_tokens["attention_mask"]
|
148 |
+
chosen_scores = values.gather(
|
149 |
+
dim=-1, index=(masks.sum(dim=-1, keepdim=True) - 1)
|
150 |
+
) # find the last token (eos) in each sequence, a
|
151 |
+
chosen_scores = chosen_scores.squeeze()
|
152 |
+
print(chosen_scores)
|
153 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|