Sony
/

Image-Text-to-Text
Safetensors
English
conversational
AKI-4B-phi-3.5-mini / src /aki_generation.py
SwyWang's picture
Upload 8 files
7eb0198 verified
raw
history blame
3.44 kB
import torch
from transformers.utils import ModelOutput
from typing import Any, Dict
def update_causal_attention_mask(attention_mask, cache=False):
"""
Updates a causal attention mask by expanding it to (n+1, n+1) during generation.
Parameters:
attention_mask (torch.Tensor): Current causal attention mask of shape (1, 1, n, n).
Returns:
torch.Tensor: Updated causal attention mask of shape (1, 1, n+1, n+1).
"""
# Get the current size `n`
_, _, n, _ = attention_mask.shape
# Create a new row and column with -inf values
new_row = torch.full((1, 1, 1, n), 1, device=attention_mask.device)
new_col = torch.full((1, 1, n+1, 1), 0, device=attention_mask.device)
new_col[0, 0, -1, -1] = 1
# Concatenate the new row and column to the existing mask
attention_mask = torch.cat([attention_mask, new_row], dim=2) # Add the new row
attention_mask = torch.cat([attention_mask, new_col], dim=3) # Add the new column
if cache:
return attention_mask[:, :, -1:, :]
else:
return attention_mask
def _aki_update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
standardize_cache_format: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
# update past_key_values
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
if getattr(outputs, "state", None) is not None:
model_kwargs["state"] = outputs.state
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs:
# modify the update mechanism to incorporate 4D attention mask
attention_mask = model_kwargs["attention_mask"]
# after the first computation, roll back to the original attention 2D design to fit Huggingface logistics
model_kwargs["attention_mask"] = torch.full((1, attention_mask.shape[-1]+1), 1, device=attention_mask.device)
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
dim=-1,
)
if (
model_kwargs.get("use_cache", True)
and "cache_position" in model_kwargs
and model_kwargs["cache_position"] is not None
):
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
# update position_ids and keep only the last one
position_ids = torch.arange(model_kwargs["past_key_values"][0][0].shape[2]+1, device=model_kwargs["attention_mask"].device).unsqueeze(0) # +1 for the new token
if model_kwargs.get("past_key_values", None) is not None:
position_ids = position_ids[:, -1:]
model_kwargs["position_ids"] = position_ids
return model_kwargs