File size: 24,379 Bytes
7eb0198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
"""
Based on: https://github.com/lucidrains/flamingo-pytorch
"""
import re
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops_exts import rearrange_many
from torch import einsum, nn
from transformers.modeling_outputs import CausalLMOutputWithPast
from typing import Optional
from dataclasses import dataclass
@dataclass
class VLMOutputWithPast(CausalLMOutputWithPast):
"""
VLMOutputWithPast is a wrapper around CausalLMOutputWithPast that adds the following attributes:
past_media_locations: Optional[torch.Tensor] = None,
past_vision_tokens: Optional[torch.Tensor] = None,
"""
past_media_locations: Optional[torch.Tensor] = None
past_vision_tokens: Optional[torch.Tensor] = None
def exists(val):
return val is not None
def FeedForward(dim, mult=4):
inner_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim, bias=False),
nn.GELU(),
nn.Linear(inner_dim, dim, bias=False),
)
class VisionTokenizer(nn.Module):
def __init__(self, dim_media, num_tokens_per_media):
super().__init__()
self.dim_media = dim_media
self.num_tokens_per_media = num_tokens_per_media
# MLP (not used in the current implementation)
class MLPVisionProjector(VisionTokenizer):
def __init__(self, *, dim, dim_inner, num_latents):
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
self.projector = nn.Sequential(
nn.Linear(dim, dim_inner),
nn.GELU(),
nn.Linear(dim_inner, dim_inner),
)
def forward(self, x):
return self.projector(x)
class PerceiverAttention(nn.Module):
def __init__(self, *, dim, dim_head=64, heads=8):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm_media = nn.LayerNorm(dim)
self.norm_latents = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
def forward(self, x, latents):
"""
Args:
x (torch.Tensor): image features
shape (b, T, n1, D)
latent (torch.Tensor): latent features
shape (b, T, n2, D)
"""
x = self.norm_media(x)
latents = self.norm_latents(latents)
h = self.heads
q = self.to_q(latents)
kv_input = torch.cat((x, latents), dim=-2)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
q, k, v = rearrange_many((q, k, v), "b t n (h d) -> b h t n d", h=h)
q = q * self.scale
# attention
sim = einsum("... i d, ... j d -> ... i j", q, k)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h t n d -> b t n (h d)", h=h)
return self.to_out(out)
class PerceiverResampler(VisionTokenizer):
def __init__(
self,
*,
dim,
dim_inner=None,
depth=6,
dim_head=64,
heads=8,
num_latents=64,
max_num_media=None,
max_num_frames=None,
ff_mult=4,
):
"""
Perceiver module which takes in image features and outputs image tokens.
Args:
dim (int): dimension of the incoming image features
dim_inner (int, optional): final dimension to project the incoming image features to;
also the final dimension of the outputted features. If None, no projection is used, and dim_inner = dim.
depth (int, optional): number of layers. Defaults to 6.
dim_head (int, optional): dimension of each head. Defaults to 64.
heads (int, optional): number of heads. Defaults to 8.
num_latents (int, optional): number of latent tokens to use in the Perceiver;
also corresponds to number of tokens per sequence to output. Defaults to 64.
max_num_media (int, optional): maximum number of media per sequence to input into the Perceiver
and keep positional embeddings for. If None, no positional embeddings are used.
max_num_frames (int, optional): maximum number of frames to input into the Perceiver
and keep positional embeddings for. If None, no positional embeddings are used.
ff_mult (int, optional): dimension multiplier for the feedforward network. Defaults to 4.
"""
if dim_inner is not None:
projection = nn.Linear(dim, dim_inner)
else:
projection = None
dim_inner = dim
super().__init__(dim_media=dim, num_tokens_per_media=num_latents)
self.projection = projection
self.latents = nn.Parameter(torch.randn(num_latents, dim))
# positional embeddings
self.frame_embs = (
nn.Parameter(torch.randn(max_num_frames, dim))
if exists(max_num_frames)
else None
)
self.media_time_embs = (
nn.Parameter(torch.randn(max_num_media, 1, dim))
if exists(max_num_media)
else None
)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(
nn.ModuleList(
[
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
FeedForward(dim=dim, mult=ff_mult),
]
)
)
self.norm = nn.LayerNorm(dim)
def forward(self, x):
"""
Args:
x (torch.Tensor): image features
shape (b, T, F, v, D)
Returns:
shape (b, T, n, D) where n is self.num_latents
"""
b, T, F, v = x.shape[:4]
# frame and media time embeddings
if exists(self.frame_embs):
frame_embs = repeat(self.frame_embs[:F], "F d -> b T F v d", b=b, T=T, v=v)
x = x + frame_embs
x = rearrange(
x, "b T F v d -> b T (F v) d"
) # flatten the frame and spatial dimensions
if exists(self.media_time_embs):
x = x + self.media_time_embs[:T]
# blocks
latents = repeat(self.latents, "n d -> b T n d", b=b, T=T)
for attn, ff in self.layers:
latents = attn(x, latents) + latents
latents = ff(latents) + latents
if exists(self.projection):
return self.projection(self.norm(latents))
else:
return self.norm(latents)
# gated cross attention
class MaskedCrossAttention(nn.Module):
def __init__(
self,
*,
dim,
dim_visual,
dim_head=64,
heads=8,
only_attend_immediate_media=True,
):
super().__init__()
self.scale = dim_head**-0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(dim_visual, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
# whether for text to only attend to immediate preceding image, or all previous images
self.only_attend_immediate_media = only_attend_immediate_media
def forward(self, x, media, media_locations=None, use_cached_media=False):
"""
Args:
x (torch.Tensor): text features
shape (B, T_txt, D_txt)
media (torch.Tensor): image features
shape (B, T_img, n, D_img) where n is the dim of the latents
media_locations: boolean mask identifying the media tokens in x
shape (B, T_txt)
use_cached_media: bool
If true, treat all of x as if they occur after the last media
registered in media_locations. T_txt does not need to exactly
equal media_locations.shape[1] in this case
"""
if not use_cached_media:
assert (
media_locations.shape[1] == x.shape[1]
), f"media_location.shape is {media_locations.shape} but x.shape is {x.shape}"
T_txt = x.shape[1]
_, T_img, n = media.shape[:3]
h = self.heads
x = self.norm(x)
q = self.to_q(x)
media = rearrange(media, "b t n d -> b (t n) d")
k, v = self.to_kv(media).chunk(2, dim=-1)
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=h)
q = q * self.scale
sim = einsum("... i d, ... j d -> ... i j", q, k)
if exists(media_locations):
media_time = torch.arange(T_img, device=x.device) + 1
if use_cached_media:
# text time is set to the last cached media location
text_time = repeat(
torch.count_nonzero(media_locations, dim=1),
"b -> b i",
i=T_txt,
)
else:
# at each boolean of True, increment the time counter (relative to media time)
text_time = media_locations.cumsum(dim=-1)
# text time must equal media time if only attending to most immediate image
# otherwise, as long as text time is greater than media time (if attending to all previous images / media)
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge
text_to_media_mask = mask_op(
rearrange(text_time, "b i -> b 1 i 1"),
repeat(media_time, "j -> 1 1 1 (j n)", n=n),
)
sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max)
sim = sim - sim.amax(dim=-1, keepdim=True).detach()
attn = sim.softmax(dim=-1)
if exists(media_locations) and self.only_attend_immediate_media:
# any text without a preceding media needs to have attention zeroed out
text_without_media_mask = text_time == 0
text_without_media_mask = rearrange(
text_without_media_mask, "b i -> b 1 i 1"
)
attn = attn.masked_fill(text_without_media_mask, 0.0)
out = einsum("... i j, ... j d -> ... i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
class GatedCrossAttentionBlock(nn.Module):
def __init__(
self,
*,
dim,
dim_visual,
dim_head=64,
heads=8,
ff_mult=4,
only_attend_immediate_media=True,
):
super().__init__()
self.attn = MaskedCrossAttention(
dim=dim,
dim_visual=dim_visual,
dim_head=dim_head,
heads=heads,
only_attend_immediate_media=only_attend_immediate_media,
)
self.attn_gate = nn.Parameter(torch.tensor([0.0]))
self.ff = FeedForward(dim, mult=ff_mult)
self.ff_gate = nn.Parameter(torch.tensor([0.0]))
def forward(
self,
x,
media,
media_locations=None,
use_cached_media=False,
):
x = (
self.attn(
x,
media,
media_locations=media_locations,
use_cached_media=use_cached_media,
)
* self.attn_gate.tanh()
+ x
)
x = self.ff(x) * self.ff_gate.tanh() + x
return x
# Both DecoupledEmbedding and DecoupledLinear are taken from https://github.com/huggingface/transformers/blob/v4.32.1/src/transformers/models/idefics/modeling_idefics.py and renamed for clarity
class DecoupledEmbedding(nn.Embedding):
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
"""
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings. In practise, the
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0,
then it will create `num_additional_embeddings` additional parameters that are always trained. If
`num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
"""
def __init__(
self,
max_original_id: int,
num_additional_embeddings: int = 0,
_weight: torch.Tensor = None,
num_original_embeddings: int = None,
embedding_dim: int = None,
partially_freeze=True,
device=None,
dtype=None,
pad_token_id=None,
) -> None:
"""
Args:
max_original_id (`int`):
The largest token id that should be embedded using the regular embedding (regular `weight`).
This is usually len(tokenizer) - 1 before additional tokens are added.
Note that this may not equal self.weight.shape[0]
num_additional_embeddings (`int`):
Number of additional tokens to initialize an Embedding matrix for (`additional_weight`).
_weight (`torch.Tensor`, *optional*, defaults to `None`): The regular weight tensor.
If provided, this sets the `num_original_embeddings` and `embedding_dim` parameters.
num_original_embeddings (`int`):
self.weight.shape[0]
embedding_dim (`int`):
The size of each embedding vector
partially_freeze: (`bool`, *optional*, defaults to `True`):
If `True`, the regular `weight` will be frozen. `additional_weight` is never frozen.
padding_idx (`int`, *optional*):
The padding index (needs to be less than num_embeddings)
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`,
`max_norm` or `norm_type`. We are not supporting these.
"""
# validate args
if pad_token_id is not None and pad_token_id > max_original_id:
raise ValueError(
f"pad_token_id must be <= max_original_id. Got {pad_token_id} and {max_original_id}."
+ "If the original tokenizer does not have a pad_token_id, use pad_token_id=None."
)
if _weight is not None:
assert (num_original_embeddings is None) or (
_weight.shape[0] == num_original_embeddings
), f"num_original_embeddings={num_original_embeddings} but _weight.shape[0]={_weight.shape[0]}"
assert (embedding_dim is None) or (
_weight.shape[1] == embedding_dim
), f"embedding_dim={embedding_dim} but _weight.shape[1]={_weight.shape[1]}"
num_original_embeddings = _weight.shape[0]
embedding_dim = _weight.shape[1]
else:
assert (
num_original_embeddings is not None
), "num_original_embeddings must be provided if _weight is not provided"
assert (
embedding_dim is not None
), "embedding_dim must be provided if _weight is not provided"
super().__init__(
num_embeddings=num_original_embeddings,
embedding_dim=embedding_dim,
device=device,
dtype=dtype,
padding_idx=pad_token_id,
_weight=_weight,
)
self.max_original_id = max_original_id
self.padding_idx = pad_token_id
self.num_additional_embeddings = num_additional_embeddings
if self.num_additional_embeddings > 0:
self.additional_embedding = nn.Embedding(
num_embeddings=self.num_additional_embeddings,
embedding_dim=embedding_dim,
device=device,
dtype=dtype,
)
self.set_requires_grad(
require_regular_grad=not partially_freeze, require_additional_grad=True
)
def set_requires_grad(self, require_regular_grad, require_additional_grad):
"""
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
"""
self.weight.requires_grad_(require_regular_grad)
self.additional_embedding.requires_grad_(require_additional_grad)
def forward(self, input_ids):
"""
we have 2 embeddings, with different indices - one pretrained self.weight and another
self.additional_embedding.weight that is being trained.
in order to make a lookup of the input ids, we:
1. find out the indices of the entries belonging to the 2nd embedding
2. extract those values while subtracting the size of the first embedding (num_embeddings), since the 2nd
embedding starts from 0 and not num_embeddings
3. perform the 2nd embedding lookup
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
5. perform the 1st embedding lookup
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
note: for the 1st embedding lookup we could have looked up only the low indices and not do the padding, but
then we have to create a new tensor and populate it with 2 tensors that are spread out across various indices -
i.e. not a simple concat - I haven't benchmarked the complex case if it's any faster, given that seqlens are
usually relatively short it's probably not faster or if faster not by much - but might be a good idea to
measure.
"""
if self.num_additional_embeddings == 0:
return F.embedding(input_ids, self.weight)
# Clone so that we don't modify the original input_ids later on
input_ids = input_ids.clone()
additional_vocab_indices = torch.where(input_ids > self.max_original_id)
input_ids_additional_vocab = input_ids[additional_vocab_indices]
additional_embeddings = self.additional_embedding(
input_ids_additional_vocab - self.max_original_id - 1
)
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
input_ids[additional_vocab_indices] = 0
full_vector = F.embedding(input_ids, self.weight)
# overwrite the records with high indices
full_vector[additional_vocab_indices] = additional_embeddings
return full_vector
def extra_repr(self) -> str:
return "num_original_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
self.max_original_id + 1,
self.num_additional_embeddings,
self.embedding_dim,
(not self.weight.requires_grad),
)
class DecoupledLinear(nn.Linear):
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
"""
Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters. In practise, the
regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `additional_out_features` > 0,
then it will create `additional_out_features * in_features` additional parameters that are always trained. If
`additional_out_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
"""
def __init__(
self,
max_original_id: int,
additional_out_features: int = 0,
_weight: torch.Tensor = None,
_bias: torch.Tensor = None,
in_features: int = None,
original_out_features: int = None,
bias: bool = True,
partially_freeze: bool = True,
device=None,
dtype=None,
) -> None:
"""
Args:
max_original_id (`int`): The largest token id that should be extracted from the regular weight.
This is usually len(tokenizer) - 1 before additional tokens are added.
Note that this may not equal original_out_features - 1
_weight: torch.Tensor, *optional*, defaults to `None`. The regular weight tensor.
If provided, this sets the `in_features` and `original_out_features` parameters.
_bias: torch.Tensor, *optional*, defaults to `None`. The regular bias tensor.
in_features: int. Input hidden size.
original_out_features: int. Original out_features of the language model's get_output_embeddings() function.
additional_out_features: int. Number of additional trainable dimensions.
bias: bool. Whether to include a bias term.
partially_freeze: bool, *optional*, defaults to `True`): If `True`, the regular `weight` will be frozen.
"""
# argument validation
if _weight is not None:
assert (_weight.shape[0] == original_out_features) or (
original_out_features is None
), f"original_out_features={original_out_features} but _weight.shape[0]={_weight.shape[0]}"
assert (_weight.shape[1] == in_features) or (
in_features is None
), f"in_features={in_features} but _weight.shape[1]={_weight.shape[1]}"
in_features = _weight.shape[1]
original_out_features = _weight.shape[0]
else:
assert (
in_features is not None
), "in_features must be provided if _weight is not provided"
assert (
original_out_features is not None
), "original_out_features must be provided if _weight is not provided"
if _bias is not None:
assert bias is True, "bias must be True if _bias is provided"
# initialize original linear
super().__init__(
in_features,
original_out_features,
bias,
device,
dtype)
# set weight and bias manually
if _weight is not None:
self.weight = nn.Parameter(_weight)
if _bias is not None:
self.bias = nn.Parameter(_bias)
self.in_features = in_features
self.original_out_features = original_out_features
self.max_original_id = max_original_id
# initialize additional linear
self.additional_out_features = additional_out_features
self.has_bias = bias
if additional_out_features > 0:
self.additional_fc = nn.Linear(
in_features=in_features,
out_features=additional_out_features,
bias=self.has_bias,
device=device,
dtype=dtype,
)
self.set_requires_grad(
require_regular_grad=not partially_freeze, require_additional_grad=True
)
def set_requires_grad(self, require_regular_grad, require_additional_grad):
"""
Helper function to separately set the requires_grad flag for the regular weight and the additional weight.
"""
self.weight.requires_grad_(require_regular_grad)
if self.has_bias:
self.bias.requires_grad_(require_regular_grad)
self.additional_fc.requires_grad_(require_additional_grad)
def forward(self, input: torch.Tensor) -> torch.Tensor:
output = F.linear(input, self.weight, self.bias)
output = output[..., : self.max_original_id + 1]
if self.additional_out_features > 0:
additional_features = F.linear(
input, self.additional_fc.weight, self.additional_fc.bias
)
output = torch.cat((output, additional_features), -1)
return output
def extra_repr(self) -> str:
"""Overwriting `nn.Linear.extra_repr` to include new parameters."""
return "in_features={}, out_features={}, additional_out_features={}, bias={}, partially_freeze={}".format(
self.in_features,
self.max_original_id + 1,
self.additional_out_features,
self.bias is not None,
(not self.weight.requires_grad or not self.bias.requires_grad),
) |