--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-r-langdetect-model results: [] --- # xlm-r-langdetect-model This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2107 - Accuracy: 0.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1059 | 1.0 | 1275 | 0.1641 | 0.9526 | | 0.0838 | 2.0 | 2550 | 0.1660 | 0.9548 | | 0.068 | 3.0 | 3825 | 0.1741 | 0.9552 | | 0.0561 | 4.0 | 5100 | 0.1828 | 0.9556 | | 0.0474 | 5.0 | 6375 | 0.1918 | 0.9549 | | 0.0428 | 6.0 | 7650 | 0.1994 | 0.9568 | | 0.0346 | 7.0 | 8925 | 0.2109 | 0.9568 | | 0.0351 | 8.0 | 10200 | 0.2138 | 0.9588 | | 0.0318 | 9.0 | 11475 | 0.2218 | 0.9588 | | 0.0282 | 10.0 | 12750 | 0.2219 | 0.9593 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1