--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: What are the different types of zari used in the sarees? - text: I need to change the delivery address for my recent order, how can I do that? - text: I need to return an item, what is the return policy for online orders? - text: Are there any sarees with Fekwa Weave technique? - text: What are the different colors in the Air Jordan 1 Retro High OG Volt Gold? inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8666666666666667 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 6 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Out of Scope | | | product faq | | | order tracking | | | product policy | | | product discoverability | | | general faq | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8667 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Are there any sarees with Fekwa Weave technique?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 11.1737 | 28 | | Label | Training Sample Count | |:------------------------|:----------------------| | Out of Scope | 35 | | general faq | 24 | | order tracking | 34 | | product discoverability | 40 | | product faq | 40 | | product policy | 40 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.256 | - | | 0.0213 | 50 | 0.2639 | - | | 0.0425 | 100 | 0.2341 | - | | 0.0638 | 150 | 0.0407 | - | | 0.0851 | 200 | 0.0698 | - | | 0.1063 | 250 | 0.014 | - | | 0.1276 | 300 | 0.0069 | - | | 0.1489 | 350 | 0.0099 | - | | 0.1701 | 400 | 0.0014 | - | | 0.1914 | 450 | 0.0007 | - | | 0.2127 | 500 | 0.0006 | - | | 0.2339 | 550 | 0.0005 | - | | 0.2552 | 600 | 0.0006 | - | | 0.2765 | 650 | 0.0005 | - | | 0.2977 | 700 | 0.0002 | - | | 0.3190 | 750 | 0.0005 | - | | 0.3403 | 800 | 0.0003 | - | | 0.3615 | 850 | 0.0003 | - | | 0.3828 | 900 | 0.0002 | - | | 0.4041 | 950 | 0.0003 | - | | 0.4254 | 1000 | 0.0002 | - | | 0.4466 | 1050 | 0.0002 | - | | 0.4679 | 1100 | 0.0001 | - | | 0.4892 | 1150 | 0.0002 | - | | 0.5104 | 1200 | 0.0002 | - | | 0.5317 | 1250 | 0.0001 | - | | 0.5530 | 1300 | 0.0002 | - | | 0.5742 | 1350 | 0.0002 | - | | 0.5955 | 1400 | 0.0001 | - | | 0.6168 | 1450 | 0.0002 | - | | 0.6380 | 1500 | 0.0002 | - | | 0.6593 | 1550 | 0.0001 | - | | 0.6806 | 1600 | 0.0001 | - | | 0.7018 | 1650 | 0.0001 | - | | 0.7231 | 1700 | 0.0001 | - | | 0.7444 | 1750 | 0.0001 | - | | 0.7656 | 1800 | 0.0001 | - | | 0.7869 | 1850 | 0.0001 | - | | 0.8082 | 1900 | 0.0001 | - | | 0.8294 | 1950 | 0.0001 | - | | 0.8507 | 2000 | 0.0001 | - | | 0.8720 | 2050 | 0.0001 | - | | 0.8932 | 2100 | 0.0001 | - | | 0.9145 | 2150 | 0.0002 | - | | 0.9358 | 2200 | 0.0002 | - | | 0.9570 | 2250 | 0.0002 | - | | 0.9783 | 2300 | 0.0001 | - | | 0.9996 | 2350 | 0.0001 | - | | 1.0208 | 2400 | 0.0001 | - | | 1.0421 | 2450 | 0.0002 | - | | 1.0634 | 2500 | 0.0001 | - | | 1.0846 | 2550 | 0.0001 | - | | 1.1059 | 2600 | 0.0001 | - | | 1.1272 | 2650 | 0.0002 | - | | 1.1484 | 2700 | 0.0001 | - | | 1.1697 | 2750 | 0.0001 | - | | 1.1910 | 2800 | 0.0001 | - | | 1.2123 | 2850 | 0.0001 | - | | 1.2335 | 2900 | 0.0001 | - | | 1.2548 | 2950 | 0.0001 | - | | 1.2761 | 3000 | 0.0001 | - | | 1.2973 | 3050 | 0.0001 | - | | 1.3186 | 3100 | 0.0001 | - | | 1.3399 | 3150 | 0.0001 | - | | 1.3611 | 3200 | 0.0001 | - | | 1.3824 | 3250 | 0.0001 | - | | 1.4037 | 3300 | 0.0001 | - | | 1.4249 | 3350 | 0.0001 | - | | 1.4462 | 3400 | 0.0001 | - | | 1.4675 | 3450 | 0.0001 | - | | 1.4887 | 3500 | 0.0001 | - | | 1.5100 | 3550 | 0.0001 | - | | 1.5313 | 3600 | 0.0001 | - | | 1.5525 | 3650 | 0.0001 | - | | 1.5738 | 3700 | 0.0001 | - | | 1.5951 | 3750 | 0.0001 | - | | 1.6163 | 3800 | 0.0001 | - | | 1.6376 | 3850 | 0.0 | - | | 1.6589 | 3900 | 0.0001 | - | | 1.6801 | 3950 | 0.0001 | - | | 1.7014 | 4000 | 0.0001 | - | | 1.7227 | 4050 | 0.0001 | - | | 1.7439 | 4100 | 0.0001 | - | | 1.7652 | 4150 | 0.0001 | - | | 1.7865 | 4200 | 0.0001 | - | | 1.8077 | 4250 | 0.0001 | - | | 1.8290 | 4300 | 0.0001 | - | | 1.8503 | 4350 | 0.0001 | - | | 1.8715 | 4400 | 0.0 | - | | 1.8928 | 4450 | 0.0001 | - | | 1.9141 | 4500 | 0.0001 | - | | 1.9353 | 4550 | 0.0001 | - | | 1.9566 | 4600 | 0.0001 | - | | 1.9779 | 4650 | 0.0001 | - | | 1.9991 | 4700 | 0.0001 | - | ### Framework Versions - Python: 3.10.16 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.40.2 - PyTorch: 2.2.2 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```