---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: What are the different types of zari used in the sarees?
- text: I need to change the delivery address for my recent order, how can I do that?
- text: I need to return an item, what is the return policy for online orders?
- text: Are there any sarees with Fekwa Weave technique?
- text: What are the different colors in the Air Jordan 1 Retro High OG Volt Gold?
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8666666666666667
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Out of Scope |
- 'Why is your website so slow?'
- 'Can I get a shoutout on your social media?'
- 'I like to listen to classical music'
|
| product faq | - 'What is the price of the Temple Butidaar Multi Color Border Pure Silk Chiffon Georgette Saree?'
- 'Do you have the Air Jordan 1 Low Shadow Brown/Brown Kelp- Sail in size 7?'
- 'Is the lakadong turmeric powder available for purchase?'
|
| order tracking | - 'What is the expected delivery time for the 10 pack of Cake Boxes to Bhopal?'
- 'What is the delivery status for my order placed using email address test@example.com?'
- 'I havent received my order'
|
| product policy | - 'What is the policy for returning a product that was part of a Cyber Monday sale?'
- 'Are there any exceptions to the return policy for items that were purchased with a special occasion promotion?'
- 'Are there any restrictions on returning sneakers with added fur or fur trim?'
|
| product discoverability | - 'Suggest me some high ankle sneakers'
- 'Do you have any grocery & gourmet honey available?'
- 'Do you have any sneaker collaborations with artists?'
|
| general faq | - 'How many cups of green tea should I drink daily to achieve the recommended therapeutic dosage of ECGC?'
- 'what is mashru silk'
- 'What specific compounds in Green Tea contribute to its antioxidant properties?'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8667 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Are there any sarees with Fekwa Weave technique?")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 4 | 11.1737 | 28 |
| Label | Training Sample Count |
|:------------------------|:----------------------|
| Out of Scope | 35 |
| general faq | 24 |
| order tracking | 34 |
| product discoverability | 40 |
| product faq | 40 |
| product policy | 40 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.256 | - |
| 0.0213 | 50 | 0.2639 | - |
| 0.0425 | 100 | 0.2341 | - |
| 0.0638 | 150 | 0.0407 | - |
| 0.0851 | 200 | 0.0698 | - |
| 0.1063 | 250 | 0.014 | - |
| 0.1276 | 300 | 0.0069 | - |
| 0.1489 | 350 | 0.0099 | - |
| 0.1701 | 400 | 0.0014 | - |
| 0.1914 | 450 | 0.0007 | - |
| 0.2127 | 500 | 0.0006 | - |
| 0.2339 | 550 | 0.0005 | - |
| 0.2552 | 600 | 0.0006 | - |
| 0.2765 | 650 | 0.0005 | - |
| 0.2977 | 700 | 0.0002 | - |
| 0.3190 | 750 | 0.0005 | - |
| 0.3403 | 800 | 0.0003 | - |
| 0.3615 | 850 | 0.0003 | - |
| 0.3828 | 900 | 0.0002 | - |
| 0.4041 | 950 | 0.0003 | - |
| 0.4254 | 1000 | 0.0002 | - |
| 0.4466 | 1050 | 0.0002 | - |
| 0.4679 | 1100 | 0.0001 | - |
| 0.4892 | 1150 | 0.0002 | - |
| 0.5104 | 1200 | 0.0002 | - |
| 0.5317 | 1250 | 0.0001 | - |
| 0.5530 | 1300 | 0.0002 | - |
| 0.5742 | 1350 | 0.0002 | - |
| 0.5955 | 1400 | 0.0001 | - |
| 0.6168 | 1450 | 0.0002 | - |
| 0.6380 | 1500 | 0.0002 | - |
| 0.6593 | 1550 | 0.0001 | - |
| 0.6806 | 1600 | 0.0001 | - |
| 0.7018 | 1650 | 0.0001 | - |
| 0.7231 | 1700 | 0.0001 | - |
| 0.7444 | 1750 | 0.0001 | - |
| 0.7656 | 1800 | 0.0001 | - |
| 0.7869 | 1850 | 0.0001 | - |
| 0.8082 | 1900 | 0.0001 | - |
| 0.8294 | 1950 | 0.0001 | - |
| 0.8507 | 2000 | 0.0001 | - |
| 0.8720 | 2050 | 0.0001 | - |
| 0.8932 | 2100 | 0.0001 | - |
| 0.9145 | 2150 | 0.0002 | - |
| 0.9358 | 2200 | 0.0002 | - |
| 0.9570 | 2250 | 0.0002 | - |
| 0.9783 | 2300 | 0.0001 | - |
| 0.9996 | 2350 | 0.0001 | - |
| 1.0208 | 2400 | 0.0001 | - |
| 1.0421 | 2450 | 0.0002 | - |
| 1.0634 | 2500 | 0.0001 | - |
| 1.0846 | 2550 | 0.0001 | - |
| 1.1059 | 2600 | 0.0001 | - |
| 1.1272 | 2650 | 0.0002 | - |
| 1.1484 | 2700 | 0.0001 | - |
| 1.1697 | 2750 | 0.0001 | - |
| 1.1910 | 2800 | 0.0001 | - |
| 1.2123 | 2850 | 0.0001 | - |
| 1.2335 | 2900 | 0.0001 | - |
| 1.2548 | 2950 | 0.0001 | - |
| 1.2761 | 3000 | 0.0001 | - |
| 1.2973 | 3050 | 0.0001 | - |
| 1.3186 | 3100 | 0.0001 | - |
| 1.3399 | 3150 | 0.0001 | - |
| 1.3611 | 3200 | 0.0001 | - |
| 1.3824 | 3250 | 0.0001 | - |
| 1.4037 | 3300 | 0.0001 | - |
| 1.4249 | 3350 | 0.0001 | - |
| 1.4462 | 3400 | 0.0001 | - |
| 1.4675 | 3450 | 0.0001 | - |
| 1.4887 | 3500 | 0.0001 | - |
| 1.5100 | 3550 | 0.0001 | - |
| 1.5313 | 3600 | 0.0001 | - |
| 1.5525 | 3650 | 0.0001 | - |
| 1.5738 | 3700 | 0.0001 | - |
| 1.5951 | 3750 | 0.0001 | - |
| 1.6163 | 3800 | 0.0001 | - |
| 1.6376 | 3850 | 0.0 | - |
| 1.6589 | 3900 | 0.0001 | - |
| 1.6801 | 3950 | 0.0001 | - |
| 1.7014 | 4000 | 0.0001 | - |
| 1.7227 | 4050 | 0.0001 | - |
| 1.7439 | 4100 | 0.0001 | - |
| 1.7652 | 4150 | 0.0001 | - |
| 1.7865 | 4200 | 0.0001 | - |
| 1.8077 | 4250 | 0.0001 | - |
| 1.8290 | 4300 | 0.0001 | - |
| 1.8503 | 4350 | 0.0001 | - |
| 1.8715 | 4400 | 0.0 | - |
| 1.8928 | 4450 | 0.0001 | - |
| 1.9141 | 4500 | 0.0001 | - |
| 1.9353 | 4550 | 0.0001 | - |
| 1.9566 | 4600 | 0.0001 | - |
| 1.9779 | 4650 | 0.0001 | - |
| 1.9991 | 4700 | 0.0001 | - |
### Framework Versions
- Python: 3.10.16
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.2
- PyTorch: 2.2.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```