Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,133 @@
|
|
1 |
---
|
2 |
base_model: unsloth/Qwen2.5-1.5B-Instruct
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
|
|
|
19 |
|
20 |
-
-
|
21 |
-
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
-
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
|
109 |
-
|
|
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
|
145 |
-
|
146 |
|
147 |
-
-
|
148 |
-
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
|
|
154 |
|
155 |
-
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
|
|
|
|
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
200 |
### Framework versions
|
201 |
|
202 |
- PEFT 0.14.0
|
|
|
1 |
---
|
2 |
base_model: unsloth/Qwen2.5-1.5B-Instruct
|
3 |
library_name: peft
|
4 |
+
license: mit
|
5 |
+
datasets:
|
6 |
+
- Rustamshry/medical_o1_reasoning_SFT_az
|
7 |
+
language:
|
8 |
+
- az
|
9 |
+
pipeline_tag: question-answering
|
10 |
+
tags:
|
11 |
+
- biology
|
12 |
+
- medical
|
13 |
---
|
14 |
|
15 |
# Model Card for Model ID
|
16 |
|
|
|
|
|
|
|
17 |
|
18 |
## Model Details
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
### Model Description
|
22 |
|
23 |
+
This model is a fine-tuned version of Qwen2.5-1.5B-Instruct on an Azerbaijani medical reasoning dataset.
|
24 |
+
It is designed to understand complex medical instructions, interpret clinical cases, and generate informed answers in Azerbaijani.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
- **Developed by:** Rustam Shiriyev
|
27 |
+
- **Model type:** Causal Language Model
|
28 |
+
- **Language(s) (NLP):** Azerbaijani
|
29 |
+
- **License:** MIT
|
30 |
+
- **Finetuned from model:** unsloth/Qwen2.5-1.5B-Instruct
|
31 |
+
- **Fine-tuning Method:** Supervised Fine-Tuning (SFT) using Unsloth + LoRA
|
32 |
+
- **Domain:** Medical Question Answering / Reasoning
|
33 |
+
- **Dataset:** The training data consists of ~19,696 rows, translated from the FreedomIntelligence/medical-o1-reasoning-SFT dataset
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
## Uses
|
37 |
|
|
|
|
|
38 |
### Direct Use
|
39 |
|
40 |
+
You can use this model directly for:
|
|
|
|
|
41 |
|
42 |
+
- Medical QA tasks in Azerbaijani
|
43 |
+
- Evaluating LLMs' ability to reason about clinical data in low-resource languages
|
44 |
+
- Generating educational prompts or tutoring-style medical answers
|
45 |
+
- Research on instruction tuning and localization of medical language models
|
|
|
46 |
|
47 |
### Out-of-Scope Use
|
48 |
|
49 |
+
- Use in life-critical medical applications
|
50 |
+
- Any application where incorrect answers could cause harm
|
51 |
+
- Use by patients or non-medical professionals for self-diagnosis
|
52 |
+
- Deployment in commercial healthcare systems without regulatory oversight or expert validation
|
53 |
|
54 |
## Bias, Risks, and Limitations
|
55 |
|
56 |
+
The model has not been clinically validated and must not be used for real medical decision-making.
|
57 |
+
Trained only on a single-source dataset, so it may not generalize to all medical topics.
|
58 |
+
Performance in zero-shot generalisation (e.g., English → Azerbaijani medical transfer) has not been tested.
|
59 |
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
## How to Get Started with the Model
|
62 |
|
63 |
+
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
login(token="")
|
66 |
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-1.5B-Instruct",)
|
68 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
69 |
+
"unsloth/Qwen2.5-1.5B-Instruct",
|
70 |
+
device_map="auto", token=""
|
71 |
+
)
|
72 |
|
73 |
+
model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen2.5-1.5B-Medical-Az")
|
74 |
|
75 |
+
instruction = "45 yaşlı kişi qəfil danışıqda pozulma, yeriyişində dəyişiklik və titrəmə meydana gəlir. Ən ehtimal diaqnoz nədir?"
|
76 |
+
prompt = f"""### Instruction:\n{instruction}\n\n### Response:\n"""
|
77 |
|
78 |
+
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
|
79 |
|
80 |
+
outputs = model.generate(
|
81 |
+
**input_ids,
|
82 |
+
max_new_tokens=1024,
|
83 |
+
#temperature=0.7,
|
84 |
+
#top_p=0.9,
|
85 |
+
#do_sample=True,
|
86 |
+
#eos_token_id=tokenizer.eos_token_id
|
87 |
+
)
|
88 |
|
89 |
+
print(tokenizer.decode(outputs[0]))
|
90 |
|
91 |
+
```
|
92 |
|
93 |
+
## Training Details
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
### Training Data
|
96 |
|
97 |
+
The model was fine-tuned on a translated and cleaned version of FreedomIntelligence/medical-o1-reasoning-SFT, which was manually converted into Azerbaijani.
|
98 |
+
All examples were filtered for translation quality and medical relevance.
|
|
|
|
|
|
|
99 |
|
100 |
+
Dataset(Translated): Rustamshry/medical_o1_reasoning_SFT_az
|
101 |
+
Link of Original Dataset: huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT
|
102 |
|
|
|
103 |
|
104 |
+
### Training Procedure
|
105 |
|
106 |
+
The model was trained using supervised fine-tuning (SFT) with parameter-efficient fine-tuning (PEFT) via LoRA, using the Unsloth library for memory-optimized training.
|
107 |
+
|
108 |
+
- **Training regime:** fp16
|
109 |
+
- **Epochs:** 2
|
110 |
+
- **Batch size:** 2
|
111 |
+
- **Gradient accumulation steps:** 4
|
112 |
+
- **Max sequence lenght:** 2000
|
113 |
+
- **Learning rate:** 2e-5
|
114 |
+
- **Optimizer:** adamw_torch
|
115 |
+
- **fp16:** True
|
116 |
+
- **LoRa rank:** 6
|
117 |
+
- **Aplha:** 16
|
118 |
+
- **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
119 |
+
|
120 |
+
|
121 |
+
#### Speeds, Sizes, Times [optional]
|
122 |
|
123 |
+
- **Training speed:** 0.12 steps/sec
|
124 |
+
- **Total training time:** 11 hours, 26 minutes
|
125 |
+
- **Total training steps:** 4924
|
126 |
|
127 |
#### Hardware
|
128 |
|
129 |
+
-**GPUs Used:**. NVIDIA Tesla T4 GPUs via Kaggle Notebook
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
|
|
131 |
### Framework versions
|
132 |
|
133 |
- PEFT 0.14.0
|