Rustamshry commited on
Commit
fff50e1
·
verified ·
1 Parent(s): 0920b90

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -149
README.md CHANGED
@@ -1,202 +1,133 @@
1
  ---
2
  base_model: unsloth/Qwen2.5-1.5B-Instruct
3
  library_name: peft
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
 
 
 
 
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
 
 
 
 
 
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
- [More Information Needed]
 
 
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.14.0
 
1
  ---
2
  base_model: unsloth/Qwen2.5-1.5B-Instruct
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - Rustamshry/medical_o1_reasoning_SFT_az
7
+ language:
8
+ - az
9
+ pipeline_tag: question-answering
10
+ tags:
11
+ - biology
12
+ - medical
13
  ---
14
 
15
  # Model Card for Model ID
16
 
 
 
 
17
 
18
  ## Model Details
19
 
 
 
 
 
20
 
21
+ ### Model Description
22
 
23
+ This model is a fine-tuned version of Qwen2.5-1.5B-Instruct on an Azerbaijani medical reasoning dataset.
24
+ It is designed to understand complex medical instructions, interpret clinical cases, and generate informed answers in Azerbaijani.
 
 
 
 
 
 
 
25
 
26
+ - **Developed by:** Rustam Shiriyev
27
+ - **Model type:** Causal Language Model
28
+ - **Language(s) (NLP):** Azerbaijani
29
+ - **License:** MIT
30
+ - **Finetuned from model:** unsloth/Qwen2.5-1.5B-Instruct
31
+ - **Fine-tuning Method:** Supervised Fine-Tuning (SFT) using Unsloth + LoRA
32
+ - **Domain:** Medical Question Answering / Reasoning
33
+ - **Dataset:** The training data consists of ~19,696 rows, translated from the FreedomIntelligence/medical-o1-reasoning-SFT dataset
34
 
 
 
 
35
 
36
  ## Uses
37
 
 
 
38
  ### Direct Use
39
 
40
+ You can use this model directly for:
 
 
41
 
42
+ - Medical QA tasks in Azerbaijani
43
+ - Evaluating LLMs' ability to reason about clinical data in low-resource languages
44
+ - Generating educational prompts or tutoring-style medical answers
45
+ - Research on instruction tuning and localization of medical language models
 
46
 
47
  ### Out-of-Scope Use
48
 
49
+ - Use in life-critical medical applications
50
+ - Any application where incorrect answers could cause harm
51
+ - Use by patients or non-medical professionals for self-diagnosis
52
+ - Deployment in commercial healthcare systems without regulatory oversight or expert validation
53
 
54
  ## Bias, Risks, and Limitations
55
 
56
+ The model has not been clinically validated and must not be used for real medical decision-making.
57
+ Trained only on a single-source dataset, so it may not generalize to all medical topics.
58
+ Performance in zero-shot generalisation (e.g., English → Azerbaijani medical transfer) has not been tested.
59
 
 
 
 
 
 
60
 
61
  ## How to Get Started with the Model
62
 
63
+ ```python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ login(token="")
66
 
67
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-1.5B-Instruct",)
68
+ base_model = AutoModelForCausalLM.from_pretrained(
69
+ "unsloth/Qwen2.5-1.5B-Instruct",
70
+ device_map="auto", token=""
71
+ )
72
 
73
+ model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen2.5-1.5B-Medical-Az")
74
 
75
+ instruction = "45 yaşlı kişi qəfil danışıqda pozulma, yeriyişində dəyişiklik və titrəmə meydana gəlir. Ən ehtimal diaqnoz nədir?"
76
+ prompt = f"""### Instruction:\n{instruction}\n\n### Response:\n"""
77
 
78
+ input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)
79
 
80
+ outputs = model.generate(
81
+ **input_ids,
82
+ max_new_tokens=1024,
83
+ #temperature=0.7,
84
+ #top_p=0.9,
85
+ #do_sample=True,
86
+ #eos_token_id=tokenizer.eos_token_id
87
+ )
88
 
89
+ print(tokenizer.decode(outputs[0]))
90
 
91
+ ```
92
 
93
+ ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
 
95
+ ### Training Data
96
 
97
+ The model was fine-tuned on a translated and cleaned version of FreedomIntelligence/medical-o1-reasoning-SFT, which was manually converted into Azerbaijani.
98
+ All examples were filtered for translation quality and medical relevance.
 
 
 
99
 
100
+ Dataset(Translated): Rustamshry/medical_o1_reasoning_SFT_az
101
+ Link of Original Dataset: huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT
102
 
 
103
 
104
+ ### Training Procedure
105
 
106
+ The model was trained using supervised fine-tuning (SFT) with parameter-efficient fine-tuning (PEFT) via LoRA, using the Unsloth library for memory-optimized training.
107
+
108
+ - **Training regime:** fp16
109
+ - **Epochs:** 2
110
+ - **Batch size:** 2
111
+ - **Gradient accumulation steps:** 4
112
+ - **Max sequence lenght:** 2000
113
+ - **Learning rate:** 2e-5
114
+ - **Optimizer:** adamw_torch
115
+ - **fp16:** True
116
+ - **LoRa rank:** 6
117
+ - **Aplha:** 16
118
+ - **Target Modules:** q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
119
+
120
+
121
+ #### Speeds, Sizes, Times [optional]
122
 
123
+ - **Training speed:** 0.12 steps/sec
124
+ - **Total training time:** 11 hours, 26 minutes
125
+ - **Total training steps:** 4924
126
 
127
  #### Hardware
128
 
129
+ -**GPUs Used:**. NVIDIA Tesla T4 GPUs via Kaggle Notebook
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
 
131
  ### Framework versions
132
 
133
  - PEFT 0.14.0