File size: 7,210 Bytes
b441592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6b90b
b441592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8677b9c
 
 
 
 
b441592
 
 
8677b9c
b441592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: microsoft/phi-4
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- neuralmagic
- redhat
- llmcompressor
- quantized
- int8
---

# phi-4-quantized.w8a8

## Model Overview
- **Model Architecture:** Phi3ForCausalLM
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Activation quantization:** INT8
  - **Weight quantization:** INT8
- **Intended Use Cases:** This model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:
  1. Memory/compute constrained environments.
  2. Latency bound scenarios.
  3. Reasoning and logic.
- **Out-of-scope:** This model is not specifically designed or evaluated for all downstream purposes, thus:
  1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
  2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model’s focus on English.
  3. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
- **Release Date:** 03/03/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)


### Model Optimizations

This model was obtained by quantizing activations and weights of [phi-4](https://huggingface.co/microsoft/phi-4) to INT8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.

Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
A combination of the [SmoothQuant](https://arxiv.org/abs/2211.10438) and [GPTQ](https://arxiv.org/abs/2210.17323) algorithms is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.


## Deployment

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic-ent/phi-4-quantized.w8a8"
number_gpus = 1

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "user", "content": "Give me a short introduction to large language model."},
]

prompts = tokenizer.apply_chat_template(messages, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

<details>
  <summary>Creation details</summary>
  This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. 


  ```python
  from transformers import AutoModelForCausalLM, AutoTokenizer
  from llmcompressor.modifiers.quantization import GPTQModifier
  from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
  from llmcompressor.transformers import oneshot
  from datasets import load_dataset

  # Load model
  model_stub = "microsoft/phi-4"
  model_name = model_stub.split("/")[-1]
  
  num_samples = 1024
  max_seq_len = 8192
  
  tokenizer = AutoTokenizer.from_pretrained(model_stub)
  
  model = AutoModelForCausalLM.from_pretrained(
      model_stub,
      device_map="auto",
      torch_dtype="auto",
  )
  
  def preprocess_fn(example):
    return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
  
  ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
  ds = ds.map(preprocess_fn)
  
  # Configure the quantization algorithm and scheme
  recipe = [
      SmoothQuantModifier(
          smoothing_strength=0.7,
          mappings=[
              [["re:.*qkv_proj"], "re:.*input_layernorm"],
              [["re:.*gate_up_proj"], "re:.*post_attention_layernorm"],
          ],
      ),
      GPTQModifier(
          ignore=["lm_head"],
          sequential_targets=["Phi3DecoderLayer"],
          dampening_frac=0.01,
          targets="Linear",
          scheme="W8A8",
      ),
  ]
  
  # Apply quantization
  oneshot(
      model=model,
      dataset=ds, 
      recipe=recipe,
      max_seq_length=max_seq_len,
      num_calibration_samples=num_samples,
  )
  
  # Save to disk in compressed-tensors format
  save_path = model_name + "-quantized.w8a8"
  model.save_pretrained(save_path)
  tokenizer.save_pretrained(save_path)
  print(f"Model and tokenizer saved to: {save_path}")
  ```
</details>
 


## Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic-ent/phi-4-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.6,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \
  --tasks openllm \
  --batch_size auto
```

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>phi-4</strong>
   </td>
   <td><strong>phi-4-quantized.w8a8<br>(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>80.30
   </td>
   <td>80.39
   </td>
   <td>100.1%
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>64.42
   </td>
   <td>64.33
   </td>
   <td>99.9%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>90.07
   </td>
   <td>90.30
   </td>
   <td>100.3%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>84.37
   </td>
   <td>84.30
   </td>
   <td>99.9%
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>80.58
   </td>
   <td>79.95
   </td>
   <td>99.2%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot, mc2)
   </td>
   <td>59.37
   </td>
   <td>58.82
   </td>
   <td>99.1%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>76.52</strong>
   </td>
   <td><strong>76.35</strong>
   </td>
   <td><strong>99.8%</strong>
   </td>
  </tr>
</table>