File size: 7,210 Bytes
b441592 1d6b90b b441592 8677b9c b441592 8677b9c b441592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
license: mit
license_link: https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE
language:
- en
pipeline_tag: text-generation
base_model: microsoft/phi-4
tags:
- phi
- nlp
- math
- code
- chat
- conversational
- neuralmagic
- redhat
- llmcompressor
- quantized
- int8
---
# phi-4-quantized.w8a8
## Model Overview
- **Model Architecture:** Phi3ForCausalLM
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Activation quantization:** INT8
- **Weight quantization:** INT8
- **Intended Use Cases:** This model is designed to accelerate research on language models, for use as a building block for generative AI powered features. It provides uses for general purpose AI systems and applications (primarily in English) which require:
1. Memory/compute constrained environments.
2. Latency bound scenarios.
3. Reasoning and logic.
- **Out-of-scope:** This model is not specifically designed or evaluated for all downstream purposes, thus:
1. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
2. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case, including the model’s focus on English.
3. Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
- **Release Date:** 03/03/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing activations and weights of [phi-4](https://huggingface.co/microsoft/phi-4) to INT8 data type.
This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized.
Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme.
A combination of the [SmoothQuant](https://arxiv.org/abs/2211.10438) and [GPTQ](https://arxiv.org/abs/2210.17323) algorithms is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic-ent/phi-4-quantized.w8a8"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Give me a short introduction to large language model."},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
<details>
<summary>Creation details</summary>
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from datasets import load_dataset
# Load model
model_stub = "microsoft/phi-4"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_stub)
model = AutoModelForCausalLM.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
recipe = [
SmoothQuantModifier(
smoothing_strength=0.7,
mappings=[
[["re:.*qkv_proj"], "re:.*input_layernorm"],
[["re:.*gate_up_proj"], "re:.*post_attention_layernorm"],
],
),
GPTQModifier(
ignore=["lm_head"],
sequential_targets=["Phi3DecoderLayer"],
dampening_frac=0.01,
targets="Linear",
scheme="W8A8",
),
]
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w8a8"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
</details>
## Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic-ent/phi-4-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.6,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>phi-4</strong>
</td>
<td><strong>phi-4-quantized.w8a8<br>(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>80.30
</td>
<td>80.39
</td>
<td>100.1%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>64.42
</td>
<td>64.33
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>90.07
</td>
<td>90.30
</td>
<td>100.3%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>84.37
</td>
<td>84.30
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>80.58
</td>
<td>79.95
</td>
<td>99.2%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>59.37
</td>
<td>58.82
</td>
<td>99.1%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>76.52</strong>
</td>
<td><strong>76.35</strong>
</td>
<td><strong>99.8%</strong>
</td>
</tr>
</table>
|