---
tags:
- w8a8
- int8
- vllm
license: apache-2.0
license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
- en
base_model: ibm-granite/granite-3.1-8b-instruct
library_name: transformers
---
granite-3.1-8b-instruct-quantized.w8a8
## Model Overview
- **Model Architecture:** granite-3.1-8b-instruct
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT8
- **Activation quantization:** INT8
- **Release Date:** 1/8/2025
- **Version:** 1.0
- **Model Developers:** Neural Magic
Quantized version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct).
It achieves an average score of 70.26 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 70.30.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "neuralmagic/granite-3.1-8b-instruct-quantized.w8a8"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/granite-3.1-8b-instruct-quantized.w8a8
```
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
Deploy on Red Hat Enterprise Linux AI
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/granite-3-1-8b-instruct-quantized-w8a8:1.5
```
```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/granite-3-1-8b-instruct-quantized-w8a8 -- --trust-remote-code
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/granite-3-1-8b-instruct-quantized-w8a8
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
Deploy on Red Hat Openshift AI
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
```
```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: granite-3-1-8b-instruct-quantized-w8a8 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: granite-3-1-8b-instruct-quantized-w8a8 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
args:
- '--trust-remote-code'
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-granite-3-1-8b-instruct-quantized-w8a8:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
```
```bash
# make sure first to be in the project where you want to deploy the model
# oc project
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```
```python
# Replace and below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://-predictor-default./v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "granite-3-1-8b-instruct-quantized-w8a8",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
```
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
Model Creation Code
```bash
python quantize.py --model_path ibm-granite/granite-3.1-8b-instruct --quant_path "output_dir/granite-3.1-8b-instruct-quantized.w8a8" --calib_size 3072 --dampening_frac 0.1 --observer mse
```
```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot, apply
import argparse
from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str)
parser.add_argument('--quant_path', type=str)
parser.add_argument('--calib_size', type=int, default=256)
parser.add_argument('--dampening_frac', type=float, default=0.1)
parser.add_argument('--observer', type=str, default="minmax")
args = parser.parse_args()
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
device_map="auto",
torch_dtype="auto",
use_cache=False,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
NUM_CALIBRATION_SAMPLES = args.calib_size
DATASET_ID = "neuralmagic/LLM_compression_calibration"
DATASET_SPLIT = "train"
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
def preprocess(example):
return {"text": example["text"]}
ds = ds.map(preprocess)
def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
truncation=False,
add_special_tokens=True,
)
ds = ds.map(tokenize, remove_columns=ds.column_names)
ignore=["lm_head"]
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"]
]
recipe = [
SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore, mappings=mappings),
GPTQModifier(
targets=["Linear"],
ignore=["lm_head"],
scheme="W8A8",
dampening_frac=args.dampening_frac,
observer=args.observer,
)
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
num_calibration_samples=args.calib_size,
max_seq_length=8196,
)
# Save to disk compressed.
model.save_pretrained(quant_path, save_compressed=True)
tokenizer.save_pretrained(quant_path)
```
## Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
Evaluation Commands
OpenLLM Leaderboard V1:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
OpenLLM Leaderboard V2:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/granite-3.1-8b-instruct-quantized.w8a8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
```
#### HumanEval
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--granite-3.1-8b-instruct-quantized.w8a8_vllm_temp_0.2-sanitized
```
### Accuracy
Category |
Metric |
ibm-granite/granite-3.1-8b-instruct |
neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 |
Recovery (%) |
OpenLLM V1 |
ARC-Challenge (Acc-Norm, 25-shot) |
66.81 |
67.06 |
100.37 |
GSM8K (Strict-Match, 5-shot) |
64.52 |
65.66 |
101.77 |
HellaSwag (Acc-Norm, 10-shot) |
84.18 |
83.93 |
99.70 |
MMLU (Acc, 5-shot) |
65.52 |
65.03 |
99.25 |
TruthfulQA (MC2, 0-shot) |
60.57 |
60.02 |
99.09 |
Winogrande (Acc, 5-shot) |
80.19 |
79.87 |
99.60 |
Average Score |
70.30 |
70.26 |
99.95 |
OpenLLM V2 |
IFEval (Inst Level Strict Acc, 0-shot) |
74.01 |
73.50 |
99.31 |
BBH (Acc-Norm, 3-shot) |
53.19 |
52.59 |
98.87 |
Math-Hard (Exact-Match, 4-shot) |
14.77 |
15.73 |
106.50 |
GPQA (Acc-Norm, 0-shot) |
31.76 |
30.62 |
96.40 |
MUSR (Acc-Norm, 0-shot) |
46.01 |
44.30 |
96.28 |
MMLU-Pro (Acc, 5-shot) |
35.81 |
35.41 |
98.88 |
Average Score |
42.61 |
42.03 |
98.64 |
Coding |
HumanEval Pass@1 |
71.00 |
70.50 |
99.30 |
## Inference Performance
This model achieves up to 1.6x speedup in single-stream deployment and up to 1.7x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.6.post1, and [GuideLLM](https://github.com/neuralmagic/guidellm).
Benchmarking Command
```
guidellm --model neuralmagic/granite-3.1-8b-instruct-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=,generated_tokens=" --max seconds 360 --backend aiohttp_server
```
### Single-stream performance (measured with vLLM version 0.6.6.post1)
|
|
|
Latency (s) |
GPU class |
Model |
Speedup |
Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 |
granite-3.1-8b-instruct |
|
28.3 |
3.7 |
28.8 |
3.8 |
3.6 |
7.2 |
15.7 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.60 |
17.7 |
2.3 |
18.0 |
2.4 |
2.2 |
4.5 |
10.0 |
granite-3.1-8b-instruct-quantized.w4a16 |
2.61 |
10.3 |
1.5 |
10.7 |
1.5 |
1.3 |
2.7 |
6.6 |
A6000 |
granite-3.1-8b-instruct |
|
25.8 |
3.4 |
26.2 |
3.4 |
3.3 |
6.5 |
14.2 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.50 |
17.4 |
2.3 |
16.9 |
2.2 |
2.2 |
4.4 |
9.8 |
granite-3.1-8b-instruct-quantized.w4a16 |
2.48 |
10.0 |
1.4 |
10.4 |
1.5 |
1.3 |
2.5 |
6.2 |
A100 |
granite-3.1-8b-instruct |
|
13.6 |
1.8 |
13.7 |
1.8 |
1.7 |
3.4 |
7.3 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.31 |
10.4 |
1.3 |
10.5 |
1.4 |
1.3 |
2.6 |
5.6 |
granite-3.1-8b-instruct-quantized.w4a16 |
1.80 |
7.3 |
1.0 |
7.4 |
1.0 |
0.9 |
1.9 |
4.3 |
### Multi-stream asynchronous performance (measured with vLLM version 0.6.6.post1)
|
|
|
Maximum Throughput (Queries per Second) |
GPU class |
Model |
Speedup |
Code Completion prefill: 256 tokens decode: 1024 tokens |
Docstring Generation prefill: 768 tokens decode: 128 tokens |
Code Fixing prefill: 1024 tokens decode: 1024 tokens |
RAG prefill: 1024 tokens decode: 128 tokens |
Instruction Following prefill: 256 tokens decode: 128 tokens |
Multi-turn Chat prefill: 512 tokens decode: 256 tokens |
Large Summarization prefill: 4096 tokens decode: 512 tokens |
A5000 |
granite-3.1-8b-instruct |
|
0.8 |
3.1 |
0.4 |
2.5 |
6.7 |
2.7 |
0.3 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.71 |
1.3 |
5.2 |
0.9 |
4.0 |
10.5 |
4.4 |
0.5 |
granite-3.1-8b-instruct-quantized.w4a16 |
1.46 |
1.3 |
3.9 |
0.8 |
2.9 |
8.2 |
3.6 |
0.5 |
A6000 |
granite-3.1-8b-instruct |
|
1.3 |
5.1 |
0.9 |
4.0 |
0.3 |
4.3 |
0.6 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.39 |
1.8 |
7.0 |
1.3 |
5.6 |
14.0 |
6.3 |
0.8 |
granite-3.1-8b-instruct-quantized.w4a16 |
1.09 |
1.9 |
4.8 |
1.0 |
3.8 |
10.0 |
5.0 |
0.6 |
A100 |
granite-3.1-8b-instruct |
|
3.1 |
10.7 |
2.1 |
8.5 |
20.6 |
9.6 |
1.4 |
granite-3.1-8b-instruct-quantized.w8a8 (this model) |
1.23 |
3.8 |
14.2 |
2.1 |
11.4 |
25.9 |
12.1 |
1.7 |
granite-3.1-8b-instruct-quantized.w4a16 |
0.96 |
3.4 |
9.0 |
2.6 |
7.2 |
18.0 |
8.8 |
1.3 |