--- library_name: vllm language: - ar - de - en - es - fr - hi - id - it - pt - th - tl - vi base_model: - meta-llama/Llama-4-Scout-17B-16E-Instruct pipeline_tag: image-text-to-text tags: - facebook - meta - pytorch - llama - llama4 - neuralmagic - redhat - llmcompressor - quantized - FP8 license: other license_name: llama4 ---

Llama-4-Scout-17B-16E-Instruct-FP8-dynamic Model Icon

Validated Badge ## Model Overview - **Model Architecture:** Llama4ForConditionalGeneration - **Input:** Text / Image - **Output:** Text - **Model Optimizations:** - **Activation quantization:** FP8 - **Weight quantization:** FP8 - **Release Date:** 04/15/2025 - **Version:** 1.0 - **Model Developers:** Red Hat (Neural Magic) ### Model Optimizations This model was obtained by quantizing activations and weights of [Llama-4-Scout-17B-16E-Instruct](https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct) to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. The [llm-compressor](https://github.com/vllm-project/llm-compressor) library is used for quantization. ## Deployment This model can be deployed efficiently on vLLM, Red Hat Enterprise Linux AI, and Openshift AI, as shown in the example below. Deploy on vLLM ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic" number_gpus = 4 sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) prompt = "Give me a short introduction to large language model." llm = LLM(model=model_id, tensor_parallel_size=number_gpus) outputs = llm.generate(prompt, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
Deploy on Red Hat AI Inference Server ```bash podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ --ipc=host \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ --env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ --name=vllm \ registry.access.redhat.com/rhaiis/rh-vllm-cuda \ vllm serve \ --tensor-parallel-size 8 \ --max-model-len 32768 \ --enforce-eager --model RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic ```
Deploy on Red Hat Enterprise Linux AI ```bash # Download model from Red Hat Registry via docker # Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. ilab model download --repository docker://registry.redhat.io/rhelai1/llama-4-scout-17b-16e-instruct-fp8-dynamic:1.5 ``` ```bash # Serve model via ilab ilab model serve --model-path ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-fp8-dynamic # Chat with model ilab model chat --model ~/.cache/instructlab/models/llama-4-scout-17b-16e-instruct-fp8-dynamic ``` See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
Deploy on Red Hat Openshift AI ```python # Setting up vllm server with ServingRuntime # Save as: vllm-servingruntime.yaml apiVersion: serving.kserve.io/v1alpha1 kind: ServingRuntime metadata: name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name annotations: openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' labels: opendatahub.io/dashboard: 'true' spec: annotations: prometheus.io/port: '8080' prometheus.io/path: '/metrics' multiModel: false supportedModelFormats: - autoSelect: true name: vLLM containers: - name: kserve-container image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm command: - python - -m - vllm.entrypoints.openai.api_server args: - "--port=8080" - "--model=/mnt/models" - "--served-model-name={{.Name}}" env: - name: HF_HOME value: /tmp/hf_home ports: - containerPort: 8080 protocol: TCP ``` ```python # Attach model to vllm server. This is an NVIDIA template # Save as: inferenceservice.yaml apiVersion: serving.kserve.io/v1beta1 kind: InferenceService metadata: annotations: openshift.io/display-name: Llama-4-Scout-17B-16E-Instruct-FP8-dynamic # OPTIONAL CHANGE serving.kserve.io/deploymentMode: RawDeployment name: Llama-4-Scout-17B-16E-Instruct-FP8-dynamic # specify model name. This value will be used to invoke the model in the payload labels: opendatahub.io/dashboard: 'true' spec: predictor: maxReplicas: 1 minReplicas: 1 model: modelFormat: name: vLLM name: '' resources: limits: cpu: '2' # this is model specific memory: 8Gi # this is model specific nvidia.com/gpu: '1' # this is accelerator specific requests: # same comment for this block cpu: '1' memory: 4Gi nvidia.com/gpu: '1' runtime: vllm-cuda-runtime # must match the ServingRuntime name above storageUri: oci://registry.redhat.io/rhelai1/modelcar-llama-4-scout-17b-16e-instruct-fp8-dynamic:1.5 tolerations: - effect: NoSchedule key: nvidia.com/gpu operator: Exists ``` ```bash # make sure first to be in the project where you want to deploy the model # oc project # apply both resources to run model # Apply the ServingRuntime oc apply -f vllm-servingruntime.yaml # Apply the InferenceService oc apply -f qwen-inferenceservice.yaml ``` ```python # Replace and below: # - Run `oc get inferenceservice` to find your URL if unsure. # Call the server using curl: curl https://-predictor-default./v1/chat/completions -H "Content-Type: application/json" \ -d '{ "model": "Llama-4-Scout-17B-16E-Instruct-FP8-dynamic", "stream": true, "stream_options": { "include_usage": true }, "max_tokens": 1, "messages": [ { "role": "user", "content": "How can a bee fly when its wings are so small?" } ] }' ``` See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
## Creation
Creation details This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. ```python #!/usr/bin/env python3 """ This script loads an LLM model and applies FP8 quantization to weights and activations. Activations are dynamically quantized, i.e. during actual runtime. """ import argparse import torch from transformers import AutoTokenizer, AutoModelForCausalLM, Llama4ForConditionalGeneration from llmcompressor.modifiers.quantization import QuantizationModifier from llmcompressor import oneshot from compressed_tensors.quantization import ( QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy, ) def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Quantize a causal language model") parser.add_argument( "--model_path", type=str, required=True, help="Path to the pre-trained model", ) parser.add_argument( "--quant_path", type=str, required=True, help="Output path for the quantized model", ) return parser.parse_args() def main(): """Main function to load and quantize the model.""" args = parse_arguments() print(f"Loading model from {args.model_path}...") model = Llama4ForConditionalGeneration.from_pretrained( args.model_path, device_map="auto", torch_dtype="auto", trust_remote_code=True, ) quant_scheme = QuantizationScheme( targets=["Linear"], weights=QuantizationArgs( num_bits=8, type=QuantizationType.FLOAT, strategy=QuantizationStrategy.CHANNEL, symmetric=True, observer="mse", ), input_activations=QuantizationArgs( num_bits=8, type=QuantizationType.FLOAT, strategy=QuantizationStrategy.TOKEN, symmetric=True, dynamic=True, ), output_activations=None, ) recipe = QuantizationModifier( targets="Linear", config_groups={"group_0": quant_scheme}, ignore=[ 're:.*lm_head', 're:.*self_attn', 're:.*router', 're:.*vision_model', 're:.*multi_modal_projector', ] ) print("Applying quantization...") oneshot( model=model, recipe=recipe, trust_remote_code_model=True, ) model.save_pretrained(args.quant_path, save_compressed=True, skip_compression_stats=True, disable_sparse_compression=True) print(f"Quantized model saved to {args.quant_path}") if __name__ == "__main__": main() ```
## Evaluation The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA. All evaluations are obtained through [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
Evaluation details **OpenLLM v1** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \ --tasks openllm \ --batch_size auto ``` **OpenLLM v2** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \ --tasks leaderboard \ --apply_chat_template \ --fewshot_as_multiturn \ --batch_size auto ``` **Long Context RULER** ``` lm_eval \ --model vllm \ --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \ --tasks ruler \ --metadata='{"max_seq_lengths":[131072]}' \ --batch_size auto ``` **Multimodal MMMU** ``` lm_eval \ --model vllm-vlm \ --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \ --tasks mmmu_val \ --apply_chat_template \ --batch_size auto ``` **Multimodal ChartQA** ``` export VLLM_MM_INPUT_CACHE_GIB=8 lm_eval \ --model vllm-vlm \ --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \ --tasks chartqa \ --apply_chat_template \ --batch_size auto ```
### Accuracy | | Recovery (%) | meta-llama/Llama-4-Scout-17B-16E-Instruct | RedHatAI/Llama-4-Scout-17B-16E-Instruct-FP8-dynamic
(this model) | | ---------------------------------------------- | :-----------: | :---------------------------------------: | :-----------------------------------------------------------------: | | ARC-Challenge
25-shot | 100.36 | 69.37 | 69.62 | | GSM8k
5-shot | 99.24 | 90.45 | 89.76 | | HellaSwag
10-shot | 99.94 | 85.23 | 85.18 | | MMLU
5-shot | 99.94 | 80.54 | 80.49 | | TruthfulQA
0-shot | 99.17 | 61.41 | 60.90 | | WinoGrande
5-shot | 98.88 | 77.90 | 77.03 | | **OpenLLM v1
Average Score** | **99.59** | **77.48** | **77.16** | | IFEval
0-shot
avg of inst and prompt acc | 100.91 | 86.90 | 87.69 | | Big Bench Hard
3-shot | 99.82 | 65.13 | 65.01 | | Math Lvl 5
4-shot | 98.82 | 57.78 | 57.10 | | GPQA
0-shot | 100.53 | 31.88 | 32.05 | | MuSR
0-shot | 102.18 | 42.20 | 43.12 | | MMLU-Pro
5-shot | 99.82 | 55.70 | 55.60 | | **OpenLLM v2
Average Score** | **100.28** | **56.60** | **56.76** | | RULER
seqlen = 131072
niah_multikey_1 | 101.36 | 88.20 | 89.40 | | RULER
seqlen = 131072
niah_multikey_2 | 100.72 | 83.60 | 84.20 | | RULER
seqlen = 131072
niah_multikey_3 | 96.19 | 78.80 | 75.80 | | RULER
seqlen = 131072
niah_multiquery | 100.79 | 95.40 | 96.15 | | RULER
seqlen = 131072
niah_multivalue | 97.22 | 73.75 | 71.70 | | RULER
seqlen = 131072
niah_single_1 | 100.00 | 100.00 | 100.00 | | RULER
seqlen = 131072
niah_single_2 | 100.00 | 99.80 | 99.80 | | RULER
seqlen = 131072
niah_single_3 | 100.00 | 99.80 | 99.80 | | RULER
seqlen = 131072
ruler_cwe | 96.19 | 39.42 | 37.92 | | RULER
seqlen = 131072
ruler_fwe | 98.86 | 92.93 | 91.87 | | RULER
seqlen = 131072
ruler_qa_hotpot | 100.00 | 48.20 | 48.20 | | RULER
seqlen = 131072
ruler_qa_squad | 98.81 | 53.57 | 52.93 | | RULER
seqlen = 131072
ruler_qa_vt | 100.35 | 92.28 | 92.60 | | **RULER
seqlen = 131072
Average Score** | **99.49** | **80.44** | **80.03** | | MMMU
0-shot | 97.92 | 53.44 | 52.33 | | ChartQA
0-shot
exact_match | 100.12 | 65.88 | 65.96 | | ChartQA
0-shot
relaxed_accuracy | 99.69 | 88.92 | 88.64 | | **Multimodal Average Score** | **99.38** | **69.41** | **68.98** |