SiriusL commited on
Commit
758b134
·
verified ·
1 Parent(s): bcd6528

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md CHANGED
@@ -12,3 +12,141 @@ tags:
12
  # InfiGUI-R1-3B
13
 
14
  This repository contains the model from the [InfiGUI-R1](https://arxiv.org/abs/2504.14239) paper. The model is based on `Qwen2.5-VL-3B-Instruct` and trained using the proposed Actor2Reasoner framework, enhanced through reinforcement learning to improve its planning and reflection capabilities for GUI tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # InfiGUI-R1-3B
13
 
14
  This repository contains the model from the [InfiGUI-R1](https://arxiv.org/abs/2504.14239) paper. The model is based on `Qwen2.5-VL-3B-Instruct` and trained using the proposed Actor2Reasoner framework, enhanced through reinforcement learning to improve its planning and reflection capabilities for GUI tasks.
15
+
16
+ ## Quick Start
17
+
18
+ ### Installation
19
+ First install required dependencies:
20
+ ```bash
21
+ pip install transformers qwen-vl-utils
22
+ ```
23
+
24
+ ### An Example of GUI Grounding & Trajectory Task
25
+ ```python
26
+ import cv2
27
+ import json
28
+ import torch
29
+ import requests
30
+ from PIL import Image
31
+ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
32
+ from qwen_vl_utils import process_vision_info, smart_resize
33
+
34
+ MAX_IMAGE_PIXELS = 5600*28*28
35
+
36
+ # Load model and processor
37
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
38
+ "Reallm-Labs/InfiGUI-R1-3B",
39
+ torch_dtype=torch.bfloat16,
40
+ attn_implementation="flash_attention_2",
41
+ device_map="auto"
42
+ )
43
+ processor = AutoProcessor.from_pretrained("Reallm-Labs/InfiGUI-R1-3B", max_pixels=MAX_IMAGE_PIXELS, padding_side="left")
44
+
45
+ # Prepare image
46
+ img_url = "https://raw.githubusercontent.com/Reallm-Labs/InfiGUI-R1/main/images/test_img.png"
47
+ response = requests.get(img_url)
48
+ with open("test_img.png", "wb") as f:
49
+ f.write(response.content)
50
+ image = Image.open("test_img.png")
51
+ width, height = image.size
52
+ new_height, new_width = smart_resize(height, width, max_pixels=MAX_IMAGE_PIXELS)
53
+
54
+ # Prepare inputs
55
+ instruction = "View detailed storage space usage"
56
+
57
+ system_prompt = "You FIRST think about the reasoning process as an internal monologue and then provide the final answer.\nThe reasoning process MUST BE enclosed within <think> </think> tags."
58
+ tool_prompt = "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{\"type\": \"function\", \"function\": {\"name\": \"mobile_use\", \"description\": \"Use a touchscreen to interact with a mobile device, and take screenshots.\\n* This is an interface to a mobile device with touchscreen. You can perform actions like clicking, typing, swiping, etc.\\n* Some applications may take time to start or process actions, so you may need to wait and take successive screenshots to see the results of your actions.\\n* The screen's resolution is " + str(new_width) + "x" + str(new_height) + ".\\n* Make sure to click any buttons, links, icons, etc with the cursor tip in the center of the element. Don't click boxes on their edges unless asked.\", \"parameters\": {\"properties\": {\"action\": {\"description\": \"The action to perform. The available actions are:\\n* `key`: Perform a key event on the mobile device.\\n - This supports adb's `keyevent` syntax.\\n - Examples: \\\"volume_up\\\", \\\"volume_down\\\", \\\"power\\\", \\\"camera\\\", \\\"clear\\\".\\n* `click`: Click the point on the screen with coordinate (x, y).\\n* `long_press`: Press the point on the screen with coordinate (x, y) for specified seconds.\\n* `swipe`: Swipe from the starting point with coordinate (x, y) to the end point with coordinates2 (x2, y2).\\n* `type`: Input the specified text into the activated input box.\\n* `system_button`: Press the system button.\\n* `open`: Open an app on the device.\\n* `wait`: Wait specified seconds for the change to happen.\\n* `terminate`: Terminate the current task and report its completion status.\", \"enum\": [\"key\", \"click\", \"long_press\", \"swipe\", \"type\", \"system_button\", \"open\", \"wait\", \"terminate\"], \"type\": \"string\"}, \"coordinate\": {\"description\": \"(x, y): The x (pixels from the left edge) and y (pixels from the top edge) coordinates to move the mouse to. Required only by `action=click`, `action=long_press`, and `action=swipe`.\", \"type\": \"array\"}, \"coordinate2\": {\"description\": \"(x, y): The x (pixels from the left edge) and y (pixels from the top edge) coordinates to move the mouse to. Required only by `action=swipe`.\", \"type\": \"array\"}, \"text\": {\"description\": \"Required only by `action=key`, `action=type`, and `action=open`.\", \"type\": \"string\"}, \"time\": {\"description\": \"The seconds to wait. Required only by `action=long_press` and `action=wait`.\", \"type\": \"number\"}, \"button\": {\"description\": \"Back means returning to the previous interface, Home means returning to the desktop, Menu means opening the application background menu, and Enter means pressing the enter. Required only by `action=system_button`\", \"enum\": [\"Back\", \"Home\", \"Menu\", \"Enter\"], \"type\": \"string\"}, \"status\": {\"description\": \"The status of the task. Required only by `action=terminate`.\", \"type\": \"string\", \"enum\": [\"success\", \"failure\"]}}, \"required\": [\"action\"], \"type\": \"object\"}}}\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call>"
59
+ grounding_prompt = f'''The screen's resolution is {new_width}x{new_height}.\nPoint to the UI element most relevant to "{instruction}", output its coordinates using JSON format:\n```json\n[\n {{"point_2d": [x, y], "label": "object name/description"}}\n]```'''
60
+ trajectory_prompt = f"The user query: {instruction}\nTask progress (You have done the following operation on the current device): "
61
+
62
+
63
+ # Build messages
64
+ grounding_messages = [
65
+ {"role": "system", "content": system_prompt},
66
+ {
67
+ "role": "user",
68
+ "content": [
69
+ {"type": "image", "image": "test_img.png"},
70
+ {"type": "text", "text": grounding_prompt}
71
+ ]
72
+ }
73
+ ]
74
+ trajectory_messages = [
75
+ {"role": "system", "content": system_prompt + tool_prompt},
76
+ {
77
+ "role": "user",
78
+ "content": [
79
+ {"type": "text", "text": trajectory_prompt},
80
+ {"type": "image", "image": "test_img.png"}
81
+ ],
82
+ },
83
+ ]
84
+ messages = [grounding_messages, trajectory_messages]
85
+
86
+ # Process and generate
87
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
88
+ image_inputs, video_inputs = process_vision_info(messages)
89
+ inputs = processor(text=text, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt").to("cuda")
90
+ generated_ids = model.generate(**inputs, max_new_tokens=512)
91
+ output_text = processor.batch_decode(
92
+ [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)],
93
+ skip_special_tokens=True,
94
+ clean_up_tokenization_spaces=False
95
+ )
96
+
97
+ # Visualize results
98
+ output_text = [ot.split("</think>")[-1] for ot in output_text]
99
+
100
+ grounding_output = output_text[0].replace("```json", "").replace("```", "").strip()
101
+ trajectory_output = output_text[1].replace("<tool_call>", "").replace("</tool_call>", "").strip()
102
+
103
+ try:
104
+ grounding_output = json.loads(grounding_output)
105
+ trajectory_output = json.loads(trajectory_output)
106
+
107
+ grounding_coords = grounding_output[0]['point_2d']
108
+ trajectory_coords = trajectory_output["arguments"]['coordinate'] if "coordinate" in trajectory_output["arguments"] else None
109
+
110
+ grounding_label = grounding_output[0]['label']
111
+ trajectory_label = json.dumps(trajectory_output["arguments"])
112
+
113
+ # Load the original image
114
+ img = cv2.imread("test_img.png")
115
+ if img is None:
116
+ raise ValueError("Could not load the image")
117
+
118
+ height, width = img.shape[:2]
119
+
120
+ # Create copies for each visualization
121
+ grounding_img = img.copy()
122
+ trajectory_img = img.copy()
123
+
124
+ # Visualize grounding coordinates
125
+ if grounding_coords:
126
+ x = int(grounding_coords[0] / new_width * width)
127
+ y = int(grounding_coords[1] / new_height * height)
128
+
129
+ cv2.circle(grounding_img, (x, y), 10, (0, 0, 255), -1)
130
+ cv2.putText(grounding_img, grounding_label, (x+10, y-10),
131
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
132
+ cv2.imwrite("grounding_output.png", grounding_img)
133
+ print("Predicted coordinates:", grounding_coords)
134
+ print(f"Grounding visualization saved to grounding_output.png")
135
+
136
+ # Visualize trajectory coordinates
137
+ if trajectory_coords:
138
+ x = int(trajectory_coords[0] / new_width * width)
139
+ y = int(trajectory_coords[1] / new_height * height)
140
+
141
+ cv2.circle(trajectory_img, (x, y), 10, (0, 0, 255), -1)
142
+ cv2.putText(trajectory_img, trajectory_label, (x+10, y-10),
143
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
144
+ cv2.imwrite("trajectory_output.png", trajectory_img)
145
+ print("Predicted action:", trajectory_label)
146
+ print(f"Trajectory visualization saved to trajectory_output.png")
147
+
148
+ except:
149
+ print("Error: Failed to parse coordinates or process image")
150
+ ```
151
+
152
+ For more information, please refer to our [repo](https://github.com/Reallm-Labs/InfiGUI-R1).