Update modeling_rwkv_hybrid.py
Browse files- modeling_rwkv_hybrid.py +135 -51
modeling_rwkv_hybrid.py
CHANGED
@@ -37,63 +37,95 @@ logger = logging.get_logger(__name__)
|
|
37 |
|
38 |
_CONFIG_FOR_DOC = "RwkvHybridConfig"
|
39 |
|
|
|
40 |
class RwkvHybridDecoderLayer(nn.Module):
|
41 |
-
def __init__(self, config: RwkvHybridConfig, layer_idx: int
|
42 |
super().__init__()
|
43 |
self.hidden_size = config.hidden_size
|
44 |
|
45 |
self.is_rwkv = True if layer_idx in config.wkv_layers else False
|
46 |
if self.is_rwkv:
|
47 |
if config.wkv_version == 7:
|
48 |
-
self.self_attn = Rwkv7Attention(
|
49 |
-
|
50 |
-
get_v_first=get_v_first)
|
51 |
elif config.wkv_version == 6:
|
52 |
-
self.self_attn = Rwkv6Attention(
|
53 |
-
|
54 |
-
get_v_first=get_v_first)
|
55 |
else:
|
56 |
raise NotImplementedError
|
57 |
-
elif not self.is_rwkv:
|
58 |
-
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
59 |
else:
|
60 |
-
self.self_attn =
|
61 |
-
raise NotImplementedError
|
62 |
|
63 |
self.mlp = Qwen2MLP(config)
|
64 |
self.input_layernorm = Qwen2RMSNorm(
|
65 |
config.hidden_size, eps=config.rms_norm_eps)
|
66 |
self.post_attention_layernorm = Qwen2RMSNorm(
|
67 |
-
config.hidden_size, eps=config.rms_norm_eps)
|
|
|
68 |
|
69 |
-
|
70 |
def forward(
|
71 |
self,
|
72 |
hidden_states: torch.Tensor,
|
73 |
attention_mask: Optional[torch.Tensor] = None,
|
74 |
-
position_ids: Optional[torch.
|
75 |
past_key_value: Optional[Cache] = None,
|
76 |
output_attentions: Optional[bool] = False,
|
77 |
use_cache: Optional[bool] = False,
|
78 |
-
cache_position: Optional[torch.
|
79 |
-
position_embeddings: Optional[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
**kwargs,
|
81 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
residual = hidden_states
|
83 |
|
84 |
hidden_states = self.input_layernorm(hidden_states)
|
85 |
|
86 |
# RWKV attention
|
87 |
-
|
88 |
-
hidden_states=
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
hidden_states = residual + hidden_states
|
98 |
|
99 |
# Fully Connected
|
@@ -106,8 +138,12 @@ class RwkvHybridDecoderLayer(nn.Module):
|
|
106 |
if output_attentions:
|
107 |
outputs += (self_attn_weights,)
|
108 |
|
|
|
|
|
|
|
109 |
return outputs
|
110 |
|
|
|
111 |
RWKV_HYBRID_START_DOCSTRING = r"""
|
112 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
113 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
@@ -124,6 +160,7 @@ RWKV_HYBRID_START_DOCSTRING = r"""
|
|
124 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
125 |
"""
|
126 |
|
|
|
127 |
@add_start_docstrings(
|
128 |
"The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
|
129 |
RWKV_HYBRID_START_DOCSTRING,
|
@@ -146,6 +183,7 @@ class RwkvHybridPreTrainedModel(PreTrainedModel):
|
|
146 |
if module.padding_idx is not None:
|
147 |
module.weight.data[module.padding_idx].zero_()
|
148 |
|
|
|
149 |
RWKV_HYBRID_INPUTS_DOCSTRING = r"""
|
150 |
Args:
|
151 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
@@ -238,11 +276,13 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
238 |
self.padding_idx = config.pad_token_id
|
239 |
self.vocab_size = config.vocab_size
|
240 |
|
241 |
-
self.embed_tokens = nn.Embedding(
|
|
|
242 |
self.thread_local = threading.local()
|
243 |
self.thread_local.v_first = None
|
244 |
self.layers = nn.ModuleList(
|
245 |
-
[RwkvHybridDecoderLayer(config, layer_idx
|
|
|
246 |
)
|
247 |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
248 |
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
@@ -266,19 +306,20 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
266 |
for layer in self.layers:
|
267 |
layer.self_attn.time_mixer.post_init()
|
268 |
|
269 |
-
def update_v_first(self, new_v_first):
|
270 |
-
"""Callback function to update v_first in HybridModel."""
|
271 |
-
self.thread_local.v_first = new_v_first
|
272 |
-
|
273 |
-
def get_v_first(self):
|
274 |
-
return self.thread_local.v_first
|
275 |
-
|
276 |
def get_input_embeddings(self):
|
277 |
return self.embed_tokens
|
278 |
|
279 |
def set_input_embeddings(self, value):
|
280 |
self.embed_tokens = value
|
281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
@add_start_docstrings_to_model_forward(RWKV_HYBRID_INPUTS_DOCSTRING)
|
283 |
def forward(
|
284 |
self,
|
@@ -292,7 +333,12 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
292 |
output_hidden_states: Optional[bool] = None,
|
293 |
return_dict: Optional[bool] = None,
|
294 |
cache_position: Optional[torch.LongTensor] = None,
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
296 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
297 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
298 |
output_hidden_states = (
|
@@ -302,7 +348,8 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
302 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
303 |
|
304 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
305 |
-
raise ValueError(
|
|
|
306 |
|
307 |
if self.gradient_checkpointing and self.training and use_cache:
|
308 |
logger.warning_once(
|
@@ -317,7 +364,8 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
317 |
past_key_values = HybridCache()
|
318 |
|
319 |
if cache_position is None:
|
320 |
-
past_seen_tokens = past_key_values.get_seq_length(
|
|
|
321 |
cache_position = torch.arange(
|
322 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
323 |
)
|
@@ -339,6 +387,7 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
339 |
all_self_attns = () if output_attentions else None
|
340 |
|
341 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
|
|
342 |
if output_hidden_states:
|
343 |
all_hidden_states += (hidden_states,)
|
344 |
|
@@ -353,6 +402,14 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
353 |
use_cache,
|
354 |
cache_position,
|
355 |
position_embeddings,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
356 |
)
|
357 |
else:
|
358 |
layer_outputs = decoder_layer(
|
@@ -364,7 +421,14 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
364 |
use_cache=use_cache,
|
365 |
cache_position=cache_position,
|
366 |
position_embeddings=position_embeddings,
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
)
|
369 |
|
370 |
hidden_states = layer_outputs[0]
|
@@ -372,6 +436,14 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
372 |
if output_attentions:
|
373 |
all_self_attns += (layer_outputs[1],)
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
hidden_states = self.norm(hidden_states)
|
376 |
|
377 |
# add hidden states from the last decoder layer
|
@@ -402,7 +474,8 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
402 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
403 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
404 |
# to infer the attention mask.
|
405 |
-
past_seen_tokens = past_key_values.get_seq_length(
|
|
|
406 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
407 |
|
408 |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
@@ -447,7 +520,8 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
447 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
448 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
449 |
min_dtype = torch.finfo(dtype).min
|
450 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(
|
|
|
451 |
|
452 |
return causal_mask
|
453 |
|
@@ -490,16 +564,20 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
490 |
else:
|
491 |
min_dtype = torch.finfo(dtype).min
|
492 |
causal_mask = torch.full(
|
493 |
-
(sequence_length,
|
|
|
494 |
)
|
495 |
if sequence_length != 1:
|
496 |
causal_mask = torch.triu(causal_mask, diagonal=1)
|
497 |
-
causal_mask *= torch.arange(target_length,
|
498 |
-
|
|
|
|
|
499 |
if attention_mask is not None:
|
500 |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
501 |
mask_length = attention_mask.shape[-1]
|
502 |
-
padding_mask = causal_mask[:, :, :,
|
|
|
503 |
padding_mask = padding_mask == 0
|
504 |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
505 |
padding_mask, min_dtype
|
@@ -508,7 +586,9 @@ class RwkvHybridModel(RwkvHybridPreTrainedModel):
|
|
508 |
return causal_mask
|
509 |
|
510 |
|
511 |
-
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
|
|
|
|
|
512 |
|
513 |
class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
514 |
_tied_weights_keys = ["lm_head.weight"]
|
@@ -518,7 +598,8 @@ class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
|
518 |
super().__init__(config)
|
519 |
self.model = RwkvHybridModel(config)
|
520 |
self.vocab_size = config.vocab_size
|
521 |
-
self.lm_head = nn.Linear(
|
|
|
522 |
|
523 |
# Initialize weights and apply final processing
|
524 |
self.post_init()
|
@@ -548,7 +629,8 @@ class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
|
548 |
input_ids: torch.LongTensor = None,
|
549 |
attention_mask: Optional[torch.Tensor] = None,
|
550 |
position_ids: Optional[torch.LongTensor] = None,
|
551 |
-
past_key_values: Optional[Union[Cache,
|
|
|
552 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
553 |
labels: Optional[torch.LongTensor] = None,
|
554 |
use_cache: Optional[bool] = None,
|
@@ -611,12 +693,15 @@ class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
|
611 |
)
|
612 |
|
613 |
hidden_states = outputs[0]
|
614 |
-
# Only compute necessary logits,
|
|
|
615 |
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
616 |
|
617 |
loss = None
|
618 |
if labels is not None:
|
619 |
-
loss = self.loss_function(
|
|
|
|
|
620 |
|
621 |
if not return_dict:
|
622 |
output = (logits,) + outputs[1:]
|
@@ -629,4 +714,3 @@ class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
|
629 |
hidden_states=outputs.hidden_states,
|
630 |
attentions=outputs.attentions,
|
631 |
)
|
632 |
-
|
|
|
37 |
|
38 |
_CONFIG_FOR_DOC = "RwkvHybridConfig"
|
39 |
|
40 |
+
|
41 |
class RwkvHybridDecoderLayer(nn.Module):
|
42 |
+
def __init__(self, config: RwkvHybridConfig, layer_idx: int):
|
43 |
super().__init__()
|
44 |
self.hidden_size = config.hidden_size
|
45 |
|
46 |
self.is_rwkv = True if layer_idx in config.wkv_layers else False
|
47 |
if self.is_rwkv:
|
48 |
if config.wkv_version == 7:
|
49 |
+
self.self_attn = Rwkv7Attention(
|
50 |
+
args=config, layer_id=layer_idx)
|
|
|
51 |
elif config.wkv_version == 6:
|
52 |
+
self.self_attn = Rwkv6Attention(
|
53 |
+
args=config, layer_id=layer_idx)
|
|
|
54 |
else:
|
55 |
raise NotImplementedError
|
|
|
|
|
56 |
else:
|
57 |
+
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
|
|
58 |
|
59 |
self.mlp = Qwen2MLP(config)
|
60 |
self.input_layernorm = Qwen2RMSNorm(
|
61 |
config.hidden_size, eps=config.rms_norm_eps)
|
62 |
self.post_attention_layernorm = Qwen2RMSNorm(
|
63 |
+
config.hidden_size, eps=config.rms_norm_eps)
|
64 |
+
self.layer_idx = layer_idx
|
65 |
|
|
|
66 |
def forward(
|
67 |
self,
|
68 |
hidden_states: torch.Tensor,
|
69 |
attention_mask: Optional[torch.Tensor] = None,
|
70 |
+
position_ids: Optional[torch.Tensor] = None,
|
71 |
past_key_value: Optional[Cache] = None,
|
72 |
output_attentions: Optional[bool] = False,
|
73 |
use_cache: Optional[bool] = False,
|
74 |
+
cache_position: Optional[torch.Tensor] = None,
|
75 |
+
position_embeddings: Optional[torch.Tensor] = None,
|
76 |
+
sequence_mask: Optional[torch.Tensor] = None,
|
77 |
+
cu_seq_lens_q: Optional[torch.LongTensor] = None,
|
78 |
+
cu_seq_lens_k: Optional[torch.LongTensor] = None,
|
79 |
+
max_length_q: Optional[int] = None,
|
80 |
+
max_length_k: Optional[int] = None,
|
81 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
82 |
+
v_first: Optional[torch.LongTensor] = None,
|
83 |
**kwargs,
|
84 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
85 |
+
|
86 |
+
if sequence_mask is not None:
|
87 |
+
assert len(sequence_mask.shape) == 2, (
|
88 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
89 |
+
"for padding purposes (0 indicating padding). "
|
90 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
91 |
+
)
|
92 |
+
hidden_states = hidden_states.mul(
|
93 |
+
sequence_mask[:, -hidden_states.shape[-2]:, None])
|
94 |
+
|
95 |
residual = hidden_states
|
96 |
|
97 |
hidden_states = self.input_layernorm(hidden_states)
|
98 |
|
99 |
# RWKV attention
|
100 |
+
if self.is_rwkv:
|
101 |
+
hidden_states, self_attn_weights, v_first = self.self_attn(
|
102 |
+
hidden_states=hidden_states,
|
103 |
+
position_ids=position_ids,
|
104 |
+
past_key_value=past_key_value,
|
105 |
+
output_attentions=output_attentions,
|
106 |
+
use_cache=use_cache,
|
107 |
+
cache_position=cache_position,
|
108 |
+
position_embeddings=position_embeddings,
|
109 |
+
cu_seqlens=cu_seqlens,
|
110 |
+
v_first=v_first,
|
111 |
+
**kwargs
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
hidden_states, self_attn_weights = self.self_attn(
|
115 |
+
hidden_states=hidden_states,
|
116 |
+
attention_mask=attention_mask,
|
117 |
+
position_ids=position_ids,
|
118 |
+
past_key_value=past_key_value,
|
119 |
+
output_attentions=output_attentions,
|
120 |
+
use_cache=use_cache,
|
121 |
+
cache_position=cache_position,
|
122 |
+
position_embeddings=position_embeddings,
|
123 |
+
cu_seq_lens_q=cu_seq_lens_q,
|
124 |
+
cu_seq_lens_k=cu_seq_lens_k,
|
125 |
+
max_length_q=max_length_q,
|
126 |
+
max_length_k=max_length_k,
|
127 |
+
**kwargs
|
128 |
+
)
|
129 |
hidden_states = residual + hidden_states
|
130 |
|
131 |
# Fully Connected
|
|
|
138 |
if output_attentions:
|
139 |
outputs += (self_attn_weights,)
|
140 |
|
141 |
+
if self.is_rwkv:
|
142 |
+
outputs += (v_first,)
|
143 |
+
|
144 |
return outputs
|
145 |
|
146 |
+
|
147 |
RWKV_HYBRID_START_DOCSTRING = r"""
|
148 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
149 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
|
160 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
161 |
"""
|
162 |
|
163 |
+
|
164 |
@add_start_docstrings(
|
165 |
"The bare RWKV Hybrid Model outputting raw hidden-states without any specific head on top.",
|
166 |
RWKV_HYBRID_START_DOCSTRING,
|
|
|
183 |
if module.padding_idx is not None:
|
184 |
module.weight.data[module.padding_idx].zero_()
|
185 |
|
186 |
+
|
187 |
RWKV_HYBRID_INPUTS_DOCSTRING = r"""
|
188 |
Args:
|
189 |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
|
276 |
self.padding_idx = config.pad_token_id
|
277 |
self.vocab_size = config.vocab_size
|
278 |
|
279 |
+
self.embed_tokens = nn.Embedding(
|
280 |
+
config.vocab_size, config.hidden_size, self.padding_idx)
|
281 |
self.thread_local = threading.local()
|
282 |
self.thread_local.v_first = None
|
283 |
self.layers = nn.ModuleList(
|
284 |
+
[RwkvHybridDecoderLayer(config, layer_idx)
|
285 |
+
for layer_idx in range(config.num_hidden_layers)]
|
286 |
)
|
287 |
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
288 |
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
|
|
306 |
for layer in self.layers:
|
307 |
layer.self_attn.time_mixer.post_init()
|
308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
def get_input_embeddings(self):
|
310 |
return self.embed_tokens
|
311 |
|
312 |
def set_input_embeddings(self, value):
|
313 |
self.embed_tokens = value
|
314 |
|
315 |
+
def get_v_first(self, layer_idx: int, use_cache: bool, past_key_value: HybridCache):
|
316 |
+
if layer_idx == 0:
|
317 |
+
return None
|
318 |
+
|
319 |
+
if use_cache:
|
320 |
+
return past_key_value.get_v_first()
|
321 |
+
return self.v_first
|
322 |
+
|
323 |
@add_start_docstrings_to_model_forward(RWKV_HYBRID_INPUTS_DOCSTRING)
|
324 |
def forward(
|
325 |
self,
|
|
|
333 |
output_hidden_states: Optional[bool] = None,
|
334 |
return_dict: Optional[bool] = None,
|
335 |
cache_position: Optional[torch.LongTensor] = None,
|
336 |
+
cu_seq_lens_q: Optional[torch.LongTensor] = None,
|
337 |
+
cu_seq_lens_k: Optional[torch.LongTensor] = None,
|
338 |
+
max_length_q: Optional[int] = None,
|
339 |
+
max_length_k: Optional[int] = None,
|
340 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
341 |
+
**kwargs,
|
342 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
343 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
344 |
output_hidden_states = (
|
|
|
348 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
349 |
|
350 |
if (input_ids is None) ^ (inputs_embeds is not None):
|
351 |
+
raise ValueError(
|
352 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
353 |
|
354 |
if self.gradient_checkpointing and self.training and use_cache:
|
355 |
logger.warning_once(
|
|
|
364 |
past_key_values = HybridCache()
|
365 |
|
366 |
if cache_position is None:
|
367 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
368 |
+
) if past_key_values is not None else 0
|
369 |
cache_position = torch.arange(
|
370 |
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
371 |
)
|
|
|
387 |
all_self_attns = () if output_attentions else None
|
388 |
|
389 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
390 |
+
first_rwkv_layer = True
|
391 |
if output_hidden_states:
|
392 |
all_hidden_states += (hidden_states,)
|
393 |
|
|
|
402 |
use_cache,
|
403 |
cache_position,
|
404 |
position_embeddings,
|
405 |
+
attention_mask,
|
406 |
+
cu_seq_lens_q,
|
407 |
+
cu_seq_lens_k,
|
408 |
+
max_length_q,
|
409 |
+
max_length_k,
|
410 |
+
cu_seqlens,
|
411 |
+
self.get_v_first(decoder_layer.layer_idx,
|
412 |
+
use_cache, past_key_values)
|
413 |
)
|
414 |
else:
|
415 |
layer_outputs = decoder_layer(
|
|
|
421 |
use_cache=use_cache,
|
422 |
cache_position=cache_position,
|
423 |
position_embeddings=position_embeddings,
|
424 |
+
sequence_mask=attention_mask,
|
425 |
+
cu_seq_lens_q=cu_seq_lens_q,
|
426 |
+
cu_seq_lens_k=cu_seq_lens_k,
|
427 |
+
max_length_q=max_length_q,
|
428 |
+
max_length_k=max_length_k,
|
429 |
+
cu_seqlens=cu_seqlens,
|
430 |
+
v_first=self.get_v_first(
|
431 |
+
decoder_layer.layer_idx, use_cache, past_key_values)
|
432 |
)
|
433 |
|
434 |
hidden_states = layer_outputs[0]
|
|
|
436 |
if output_attentions:
|
437 |
all_self_attns += (layer_outputs[1],)
|
438 |
|
439 |
+
if first_rwkv_layer is True and decoder_layer.is_rwkv:
|
440 |
+
v_first = layer_outputs[-1]
|
441 |
+
if use_cache:
|
442 |
+
past_key_values.update_v_first(v_first)
|
443 |
+
else:
|
444 |
+
self.register_buffer('v_first', v_first)
|
445 |
+
first_rwkv_layer = False
|
446 |
+
|
447 |
hidden_states = self.norm(hidden_states)
|
448 |
|
449 |
# add hidden states from the last decoder layer
|
|
|
474 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
475 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
476 |
# to infer the attention mask.
|
477 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
478 |
+
) if past_key_values is not None else 0
|
479 |
using_static_cache = isinstance(past_key_values, StaticCache)
|
480 |
|
481 |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
|
|
520 |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
521 |
# Details: https://github.com/pytorch/pytorch/issues/110213
|
522 |
min_dtype = torch.finfo(dtype).min
|
523 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(
|
524 |
+
causal_mask, min_dtype)
|
525 |
|
526 |
return causal_mask
|
527 |
|
|
|
564 |
else:
|
565 |
min_dtype = torch.finfo(dtype).min
|
566 |
causal_mask = torch.full(
|
567 |
+
(sequence_length,
|
568 |
+
target_length), fill_value=min_dtype, dtype=dtype, device=device
|
569 |
)
|
570 |
if sequence_length != 1:
|
571 |
causal_mask = torch.triu(causal_mask, diagonal=1)
|
572 |
+
causal_mask *= torch.arange(target_length,
|
573 |
+
device=device) > cache_position.reshape(-1, 1)
|
574 |
+
causal_mask = causal_mask[None, None,
|
575 |
+
:, :].expand(batch_size, 1, -1, -1)
|
576 |
if attention_mask is not None:
|
577 |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
578 |
mask_length = attention_mask.shape[-1]
|
579 |
+
padding_mask = causal_mask[:, :, :,
|
580 |
+
:mask_length] + attention_mask[:, None, None, :]
|
581 |
padding_mask = padding_mask == 0
|
582 |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
583 |
padding_mask, min_dtype
|
|
|
586 |
return causal_mask
|
587 |
|
588 |
|
589 |
+
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
|
590 |
+
...
|
591 |
+
|
592 |
|
593 |
class RwkvHybridForCausalLM(RwkvHybridPreTrainedModel, GenerationMixin):
|
594 |
_tied_weights_keys = ["lm_head.weight"]
|
|
|
598 |
super().__init__(config)
|
599 |
self.model = RwkvHybridModel(config)
|
600 |
self.vocab_size = config.vocab_size
|
601 |
+
self.lm_head = nn.Linear(
|
602 |
+
config.hidden_size, config.vocab_size, bias=False)
|
603 |
|
604 |
# Initialize weights and apply final processing
|
605 |
self.post_init()
|
|
|
629 |
input_ids: torch.LongTensor = None,
|
630 |
attention_mask: Optional[torch.Tensor] = None,
|
631 |
position_ids: Optional[torch.LongTensor] = None,
|
632 |
+
past_key_values: Optional[Union[Cache,
|
633 |
+
List[torch.FloatTensor]]] = None,
|
634 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
635 |
labels: Optional[torch.LongTensor] = None,
|
636 |
use_cache: Optional[bool] = None,
|
|
|
693 |
)
|
694 |
|
695 |
hidden_states = outputs[0]
|
696 |
+
# Only compute necessary logits,
|
697 |
+
# and do not upcast them to float if we are not computing the loss
|
698 |
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
699 |
|
700 |
loss = None
|
701 |
if labels is not None:
|
702 |
+
loss = self.loss_function(
|
703 |
+
logits=logits, labels=labels,
|
704 |
+
vocab_size=self.config.vocab_size, **kwargs)
|
705 |
|
706 |
if not return_dict:
|
707 |
output = (logits,) + outputs[1:]
|
|
|
714 |
hidden_states=outputs.hidden_states,
|
715 |
attentions=outputs.attentions,
|
716 |
)
|
|