bucket_no_upscale = true bucket_reso_steps = 64 cache_latents = true cache_latents_to_disk = true caption_extension = ".txt" clip_skip = 1 dynamo_backend = "no" enable_bucket = true epoch = 1 gradient_accumulation_steps = 1 gradient_checkpointing = true huber_c = 0.1 huber_schedule = "snr" learning_rate = 1.0 logging_dir = "/workspace/SL-DATASET/log" loss_type = "l2" lr_scheduler = "cosine" lr_scheduler_args = [] lr_scheduler_num_cycles = 1 lr_scheduler_power = 1 max_bucket_reso = 2048 max_data_loader_n_workers = 0 max_grad_norm = 1 max_timestep = 1000 max_token_length = 75 max_train_steps = 1600 metadata_author = "m1nd3xpand3r" metadata_description = "Just a few test to see how it looks for better train" metadata_title = "st3phl0v3-selfie" min_bucket_reso = 256 mixed_precision = "fp16" multires_noise_discount = 0.2 multires_noise_iterations = 8 network_alpha = 32 network_args = [] network_dim = 32 network_module = "networks.lora" no_half_vae = true noise_offset = 0.0357 noise_offset_type = "Original" optimizer_args = [ "decouple=True", "weight_decay=0.5", "betas=0.9,0.99", "use_bias_correction=False",] optimizer_type = "Prodigy" output_dir = "/workspace/SL-DATASET/model" output_name = "last" pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0" prior_loss_weight = 1 resolution = "1024,1024" sample_prompts = "/workspace/SL-DATASET/model/prompt.txt" sample_sampler = "euler_a" save_every_n_epochs = 1 save_model_as = "safetensors" save_precision = "fp16" scale_weight_norms = 1 seed = 12345 text_encoder_lr = 1 train_batch_size = 4 train_data_dir = "/workspace/SL-DATASET/img" unet_lr = 1 xformers = true