File size: 5,060 Bytes
9157432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch 
from sklearn.metrics import accuracy_score, f1_score
from sklearn.metrics import mutual_info_score

device = "cuda:0" if torch.cuda.is_available() else "cpu"

__all__ = ['MetricsTop']

class MetricsTop():
    def __init__(self, train_mode):
        if train_mode == "regression":
            self.metrics_dict = {
                'MOSI': self.__eval_mosi_regression,
                'MOSEI': self.__eval_mosei_regression,
            }
        else:
            self.metrics_dict = {
                'MOSI': self.__eval_mosi_classification,
                'MOSEI': self.__eval_mosei_classification,
            }

    def __eval_mosi_classification(self, y_pred, y_true):
        """
        {
            "Negative": 0,
            "Neutral": 1,
            "Positive": 2   
        }
        """
        y_pred = y_pred.cpu().detach().numpy()
        y_true = y_true.cpu().detach().numpy()
        # three classes
        y_pred_3 = np.argmax(y_pred, axis=1)  
        Mult_acc_3 = accuracy_score(y_pred_3, y_true)
        F1_score_3 = f1_score(y_true, y_pred_3, average='weighted')
        # two classes 
        y_pred = np.array([[v[0], v[2]] for v in y_pred])
        # with 0 (<= 0 or > 0)
        y_pred_2 = np.argmax(y_pred, axis=1)
        y_true_2 = []
        for v in y_true:
            y_true_2.append(0 if v <= 1 else 1)
        y_true_2 = np.array(y_true_2)
        Has0_acc_2 = accuracy_score(y_pred_2, y_true_2)
        Has0_F1_score = f1_score(y_true_2, y_pred_2, average='weighted')
        # without 0 (< 0 or > 0)
        non_zeros = np.array([i for i, e in enumerate(y_true) if e != 1])
        y_pred_2 = y_pred[non_zeros]
        y_pred_2 = np.argmax(y_pred_2, axis=1)
        y_true_2 = y_true[non_zeros]
        Non0_acc_2 = accuracy_score(y_pred_2, y_true_2)
        Non0_F1_score = f1_score(y_true_2, y_pred_2, average='weighted')

        eval_results = {
            "Has0_acc_2":  round(Has0_acc_2, 4),                         
            "Has0_F1_score": round(Has0_F1_score, 4),
            "Non0_acc_2":  round(Non0_acc_2, 4),
            "Non0_F1_score": round(Non0_F1_score, 4),
            "Acc_3": round(Mult_acc_3, 4),
            "F1_score_3": round(F1_score_3, 4)
        }
        return eval_results
    
    def __eval_mosei_classification(self, y_pred, y_true):
        return self.__eval_mosi_classification(y_pred, y_true)

    def __multiclass_acc(self, y_pred, y_true):
        """
        Compute the multiclass accuracy w.r.t. groundtruth

        :param preds: Float array representing the predictions, dimension (N,)
        :param truths: Float/int array representing the groundtruth classes, dimension (N,)
        :return: Classification accuracy
        """
        return np.sum(np.round(y_pred) == np.round(y_true)) / float(len(y_true))

    def __eval_mosei_regression(self, y_pred, y_true, exclude_zero=False):
        test_preds = y_pred.view(-1).cpu().detach().numpy()
        test_truth = y_true.view(-1).cpu().detach().numpy()

        test_preds_a7 = np.clip(test_preds, a_min=-3., a_max=3.)                
        test_truth_a7 = np.clip(test_truth, a_min=-3., a_max=3.)
        test_preds_a5 = np.clip(test_preds, a_min=-2., a_max=2.)
        test_truth_a5 = np.clip(test_truth, a_min=-2., a_max=2.)
        test_preds_a3 = np.clip(test_preds, a_min=-1., a_max=1.)
        test_truth_a3 = np.clip(test_truth, a_min=-1., a_max=1.)


        mae = np.mean(np.absolute(test_preds - test_truth)).astype(np.float64)   
        corr = np.corrcoef(test_preds, test_truth)[0][1]                         
        mult_a7 = self.__multiclass_acc(test_preds_a7, test_truth_a7)
        mult_a5 = self.__multiclass_acc(test_preds_a5, test_truth_a5)
        mult_a3 = self.__multiclass_acc(test_preds_a3, test_truth_a3)
        
        non_zeros = np.array([i for i, e in enumerate(test_truth) if e != 0])
        non_zeros_binary_truth = (test_truth[non_zeros] > 0)                     
        non_zeros_binary_preds = (test_preds[non_zeros] > 0)

        non_zeros_acc2 = accuracy_score(non_zeros_binary_preds, non_zeros_binary_truth)
        non_zeros_f1_score = f1_score(non_zeros_binary_truth, non_zeros_binary_preds, average='weighted')

        binary_truth = (test_truth >= 0)                                         
        binary_preds = (test_preds >= 0)
        acc2 = accuracy_score(binary_preds, binary_truth)
        f_score = f1_score(binary_truth, binary_preds, average='weighted')
        
        eval_results = {                             
            "acc_7": round(mult_a7, 4),
            "acc_5": round(mult_a5, 4),
            "acc_2":  round(non_zeros_acc2, 4),
            "F1_score": round(non_zeros_f1_score, 4),
            "Corr": round(corr, 4),
            "MAE": round(mae, 4)
        }



        return eval_results

    def __eval_mosi_regression(self, y_pred, y_true):
        return self.__eval_mosei_regression(y_pred, y_true)
    
    def getMetics(self, datasetName):
        return self.metrics_dict[datasetName.upper()]