File size: 6,034 Bytes
9157432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import logging
import pickle
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
__all__ = ['MMDataLoader']
logger = logging.getLogger('MMSA')
class MMDataset(Dataset):
def __init__(self, args, mode='train'):
self.mode = mode
self.args = args
DATASET_MAP = {
'mosi': self.__init_mosi,
'mosei': self.__init_mosei,
}
DATASET_MAP[args['dataset_name']]()
def __init_mosi(self):
with open(self.args['featurePath'], 'rb') as f:
data = pickle.load(f)
if 'use_bert' in self.args and self.args['use_bert']:
self.text = data[self.mode]['text_bert'].astype(np.float32)
else:
self.text = data[self.mode]['text'].astype(np.float32)
self.vision = data[self.mode]['vision'].astype(np.float32)
self.audio = data[self.mode]['audio'].astype(np.float32)
self.raw_text = data[self.mode]['raw_text']
self.ids = data[self.mode]['id']
if self.args['feature_T'] != "":
with open(self.args['feature_T'], 'rb') as f:
data_T = pickle.load(f)
if 'use_bert' in self.args and self.args['use_bert']:
self.text = data_T[self.mode]['text_bert'].astype(np.float32)
self.args['feature_dims'][0] = 768
else:
self.text = data_T[self.mode]['text'].astype(np.float32)
self.args['feature_dims'][0] = self.text.shape[2]
if self.args['feature_A'] != "":
with open(self.args['feature_A'], 'rb') as f:
data_A = pickle.load(f)
self.audio = data_A[self.mode]['audio'].astype(np.float32)
self.args['feature_dims'][1] = self.audio.shape[2]
if self.args['feature_V'] != "":
with open(self.args['feature_V'], 'rb') as f:
data_V = pickle.load(f)
self.vision = data_V[self.mode]['vision'].astype(np.float32)
self.args['feature_dims'][2] = self.vision.shape[2]
self.labels = {
'M': np.array(data[self.mode]['regression_labels']).astype(np.float32)
}
logger.info(f"{self.mode} samples: {self.labels['M'].shape}")
if not self.args['need_data_aligned']:
if self.args['feature_A'] != "":
self.audio_lengths = list(data_A[self.mode]['audio_lengths'])
else:
self.audio_lengths = data[self.mode]['audio_lengths']
if self.args['feature_V'] != "":
self.vision_lengths = list(data_V[self.mode]['vision_lengths'])
else:
self.vision_lengths = data[self.mode]['vision_lengths']
self.audio[self.audio == -np.inf] = 0
if 'need_normalized' in self.args and self.args['need_normalized']:
self.__normalize()
def __init_mosei(self):
return self.__init_mosi()
def __init_sims(self):
return self.__init_mosi()
def __truncate(self):
def do_truncate(modal_features, length):
if length == modal_features.shape[1]:
return modal_features
truncated_feature = []
padding = np.array([0 for i in range(modal_features.shape[2])])
for instance in modal_features:
for index in range(modal_features.shape[1]):
if((instance[index] == padding).all()):
if(index + length >= modal_features.shape[1]):
truncated_feature.append(instance[index:index+20])
break
else:
truncated_feature.append(instance[index:index+20])
break
truncated_feature = np.array(truncated_feature)
return truncated_feature
text_length, audio_length, video_length = self.args['seq_lens']
self.vision = do_truncate(self.vision, video_length)
self.text = do_truncate(self.text, text_length)
self.audio = do_truncate(self.audio, audio_length)
def __normalize(self):
self.vision = np.mean(self.vision, axis=1, keepdims=True)
self.audio = np.mean(self.audio, axis=1, keepdims=True)
self.vision[self.vision != self.vision] = 0
self.audio[self.audio != self.audio] = 0
def __len__(self):
return len(self.labels['M'])
def get_seq_len(self):
if 'use_bert' in self.args and self.args['use_bert']:
return (self.text.shape[2], self.audio.shape[1], self.vision.shape[1])
else:
return (self.text.shape[1], self.audio.shape[1], self.vision.shape[1])
def get_feature_dim(self):
return self.text.shape[2], self.audio.shape[2], self.vision.shape[2]
def __getitem__(self, index):
sample = {
'raw_text': self.raw_text[index],
'text': torch.Tensor(self.text[index]),
'audio': torch.Tensor(self.audio[index]),
'vision': torch.Tensor(self.vision[index]),
'index': index,
'id': self.ids[index],
'labels': {k: torch.Tensor(v[index].reshape(-1)) for k, v in self.labels.items()}
}
if not self.args['need_data_aligned']:
sample['audio_lengths'] = self.audio_lengths[index]
sample['vision_lengths'] = self.vision_lengths[index]
return sample
def MMDataLoader(args, num_workers):
datasets = {
'train': MMDataset(args, mode='train'),
'valid': MMDataset(args, mode='valid'),
'test': MMDataset(args, mode='test')
}
if 'seq_lens' in args:
args['seq_lens'] = datasets['train'].get_seq_len()
dataLoader = {
ds: DataLoader(datasets[ds],
batch_size=args['batch_size'],
num_workers=num_workers,
shuffle=True)
for ds in datasets.keys()
}
return dataLoader
|