Yukang Chen
Initial commit for qwen2-1.5b-longvila-256f-internal-reasoning-run3-wei-notimestamp
7ae6739
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL | |
import base64 | |
import os | |
import tempfile | |
from io import BytesIO | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import StoppingCriteria | |
from llava.constants import DEFAULT_IMAGE_TOKEN | |
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): | |
import cv2 | |
if fps == None or frame_count == None: | |
# if one of fps or frame_count is None, still recompute | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if fps == 0 or frame_count == 0: | |
print(f"Video file not found. return empty images. {video_file_name}") | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * num_frames, 0 | |
duration = frame_count / fps | |
frame_interval = frame_count // num_frames | |
if frame_interval == 0 and frame_count <= 1: | |
print(f"frame_interval is equal to 0. return empty image. {video_file_name}") | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * num_frames, 0 | |
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval) | |
images = [] | |
count = 0 | |
success = True | |
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) | |
while success: | |
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval) | |
if frame_count >= num_frames: | |
success, frame = vidcap.read() | |
if count in frame_indices: | |
try: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
except BaseException: | |
continue | |
if len(images) >= num_frames: | |
return images, num_frames | |
count += 1 | |
else: | |
# Left padding frames if the video is not long enough | |
success, frame = vidcap.read() | |
if success: | |
try: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
except BaseException: | |
continue | |
count += 1 | |
else: | |
break | |
if len(images) == 0: | |
raise ValueError("Did not find enough frames in the video. return empty image.") | |
return images, len(images) | |
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None): | |
""" | |
num_frames is the max number of frames the model can support. | |
frame_count is the number of frames in the input video. | |
max_fps is the max FPS of the model can support. | |
fps is the fps of the input video. | |
""" | |
import random | |
import cv2 | |
if fps == None or frame_count == None: | |
# if one of fps or frame_count is None, still recompute | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if fps == 0 or frame_count == 0: | |
print(f"Video file not found. return empty images. {video_file_name}") | |
empty_video_frames = int(random.uniform(2, 8 * max_fps)) | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * empty_video_frames, 0 | |
duration = frame_count / fps | |
# print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps) | |
# If the video is too long (longer than max_fps and num_frames can support), | |
# we will use lower fps to sample frames. | |
if duration >= num_frames / max_fps: | |
frame_interval = frame_count // num_frames | |
# If the video is too short, we will skip the video if there is only one frame. | |
if frame_interval == 0 and frame_count <= 1: | |
print(f"frame_interval is equal to 0. return empty image. {video_file_name}") | |
empty_video_frames = int(random.uniform(2, 8 * max_fps)) | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * empty_video_frames, 0 | |
images = [] | |
count = 0 | |
success = True | |
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int) | |
while success: | |
if frame_count >= num_frames: | |
# success, frame = vidcap.read() | |
if count in frame_indices: | |
success, frame = vidcap.read() | |
try: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
except: | |
# print("Failed to read frame:", count) | |
continue | |
if len(images) >= num_frames: | |
return images, num_frames | |
else: | |
success = vidcap.grab() | |
count += 1 | |
else: | |
# Left padding frames if the video is not long enough | |
success, frame = vidcap.read() | |
if success: | |
try: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
except: | |
# print("Failed to read frame:", count) | |
continue | |
count += 1 | |
else: | |
break | |
else: | |
frames_required = int(duration * max_fps) | |
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int) | |
if frames_required == 0: | |
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.") | |
empty_video_frames = int(random.uniform(2, 8 * max_fps)) | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * empty_video_frames, 0 | |
elif frames_required == 1: | |
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int) | |
images = [] | |
count = 0 | |
looked = 0 | |
success = True | |
while success: | |
success, frame = vidcap.read() | |
if success and (looked in frame_indices): | |
try: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
except: | |
continue | |
count += 1 | |
looked += 1 | |
if len(images) == 0: | |
empty_video_frames = int(random.uniform(2, 8 * max_fps)) | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * empty_video_frames, 0 | |
else: | |
return images, len(images) | |
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None): | |
""" | |
Extract frames from a video using OpenCV. | |
Args: | |
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video. | |
frames (int): Number of frames to extract from the video. | |
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals. | |
Returns: | |
list: List of PIL Images extracted from the video. | |
Raises: | |
NotImplementedError: If the type of `vpath_or_bytesio` is not supported. | |
""" | |
import cv2 | |
if isinstance(vpath_or_bytesio, str): | |
vidcap = cv2.VideoCapture(vpath_or_bytesio) | |
if max_fps > 0.0: | |
return get_frame_from_vcap_with_fps( | |
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio | |
) | |
return get_frame_from_vcap( | |
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio | |
) | |
elif isinstance(vpath_or_bytesio, (BytesIO,)): | |
# assuming mp4 | |
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video: | |
temp_video.write(vpath_or_bytesio.read()) | |
temp_video_name = temp_video.name | |
vidcap = cv2.VideoCapture(temp_video_name) | |
if max_fps > 0.0: | |
return get_frame_from_vcap_with_fps( | |
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name | |
) | |
return get_frame_from_vcap( | |
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name | |
) | |
else: | |
raise NotImplementedError(type(vpath_or_bytesio)) | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def expand2square(pil_img, background_color): | |
""" | |
Expand the given PIL image to a square shape by adding padding. | |
Parameters: | |
- pil_img: The PIL image to be expanded. | |
- background_color: The color of the padding to be added. | |
Returns: | |
- The expanded PIL image. | |
If the image is already square, it is returned as is. | |
If the image is wider than it is tall, padding is added to the top and bottom. | |
If the image is taller than it is wide, padding is added to the left and right. | |
""" | |
width, height = pil_img.size | |
if pil_img.mode == "L": | |
background_color = background_color[0] | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float("inf") | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = { | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
} | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale | |
processed_images = [] | |
########################################################################################## | |
############# Add tiles for all but the last scale using fixed squre ratio ############### | |
########################################################################################## | |
for scale in s2_scales[:-1]: | |
target_width = image_size * (scale // s2_scales[0]) | |
target_height = image_size * (scale // s2_scales[0]) | |
blocks = (scale // s2_scales[0]) ** 2 | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
########################################################################################## | |
################ Add tiles for the last scale using dynamic aspect ratio ################# | |
########################################################################################## | |
# calculate the existing image aspect ratio | |
target_ratios = { | |
(i, j) | |
for n in range(min_num, max_num + 1) | |
for i in range(1, n + 1) | |
for j in range(1, n + 1) | |
if i * j <= max_num and i * j >= min_num | |
} | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size, | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0]) | |
def dynamic_process_images_and_prompt(images, prompt, data_args, image_folder=None, max_tiles=None): | |
prompt = prompt.split(DEFAULT_IMAGE_TOKEN) | |
idx = 0 | |
all_images = [] | |
for img in images: | |
processed_images = process_image(img, data_args, image_folder, enable_dynamic_res=True, max_tiles=max_tiles) | |
all_images.append(processed_images) | |
prompt.insert(idx + 1, f"{DEFAULT_IMAGE_TOKEN}\n" * processed_images.shape[0]) | |
idx += 2 | |
prompt = "".join(prompt) | |
if all_images: | |
all_images = torch.cat(all_images) | |
else: | |
all_images = None | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, "") | |
return all_images, prompt | |
def dynamic_s2_process_images_and_prompt(images, prompt, data_args, image_folder=None): | |
idx = 0 | |
all_images = [] | |
all_block_size = [] | |
for img in images: | |
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True) | |
all_images.append(processed_images) | |
all_block_size.append(block_size) | |
idx += 2 | |
if all_images: | |
all_images = torch.cat(all_images) | |
else: | |
all_images = None | |
return all_images, all_block_size | |
def process_image( | |
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None | |
): | |
processor = data_args.image_processor | |
if isinstance(image_file, str): | |
if image_folder is not None: | |
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
else: | |
# image is stored in bytearray | |
image = image_file | |
image = image.convert("RGB") | |
if hasattr(data_args.image_processor, "crop_size"): | |
# CLIP vision tower | |
crop_size = data_args.image_processor.crop_size | |
else: | |
# SIGLIP vision tower | |
assert hasattr(data_args.image_processor, "size") | |
crop_size = data_args.image_processor.size | |
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2: | |
assert crop_size["height"] == crop_size["width"] | |
images, block_size = dynamic_s2_preprocess( | |
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"] | |
) | |
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] | |
return torch.stack(images), block_size | |
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res: | |
assert crop_size["height"] == crop_size["width"] | |
if max_tiles is not None: | |
max_num = max_tiles | |
else: | |
max_num = data_args.max_tiles | |
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"]) | |
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images] | |
return torch.stack(images) | |
if data_args.image_aspect_ratio == "resize": | |
image = image.resize((crop_size["width"], crop_size["height"])) | |
if data_args.image_aspect_ratio == "pad": | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
else: | |
# Using default behavior of the vision encoder | |
# For CLIP, default is central crop | |
# For Radio, default is central crop | |
# For Siglip, default is resize | |
# For InternVIT, default is resize | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
return image | |
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None): | |
model_cfg.image_processor = image_processor | |
new_images = [ | |
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles) | |
for image in images | |
] | |
if all(x.shape == new_images[0].shape for x in new_images): | |
if len(new_images[0].shape) == 4: | |
new_images = torch.cat(new_images, dim=0) | |
elif len(new_images[0].shape) == 3: | |
new_images = torch.stack(new_images, dim=0) | |
else: | |
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}") | |
else: | |
raise ValueError("The shape of images in new_images is different!") | |
return new_images | |
def tokenizer_image_token(prompt, tokenizer, return_tensors=None): | |
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0] | |
def is_gemma_tokenizer(tokenizer): | |
return "gemma" in tokenizer.__class__.__name__.lower() | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith("checkpoint-"): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.keyword_ids = [] | |
self.max_keyword_len = 0 | |
for keyword in keywords: | |
cur_keyword_ids = tokenizer(keyword).input_ids | |
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: | |
cur_keyword_ids = cur_keyword_ids[1:] | |
if len(cur_keyword_ids) > self.max_keyword_len: | |
self.max_keyword_len = len(cur_keyword_ids) | |
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
self.tokenizer = tokenizer | |
self.start_len = input_ids.shape[1] | |
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) | |
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] | |
for keyword_id in self.keyword_ids: | |
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all(): | |
return True | |
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
outputs = [] | |
for i in range(output_ids.shape[0]): | |
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) | |
return all(outputs) | |