Yukang Chen
Initial commit for qwen2-1.5b-longvila-256f-internal-reasoning-run3-wei-notimestamp
7ae6739
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import math | |
import os | |
import os.path as osp | |
import warnings | |
from dataclasses import asdict | |
from typing import Any, Dict, List, Optional, Sequence, Tuple | |
import torch | |
from huggingface_hub import file_exists, repo_exists | |
from huggingface_hub.utils import HFValidationError | |
import transformers | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
PretrainedConfig, | |
PreTrainedModel, | |
PreTrainedTokenizer, | |
) | |
# from .conversation import * | |
from .conversation import default_conversation, SeparatorStyle | |
SENTINEL_TOKEN = "<vila/sentinel>" | |
MEDIA_TOKENS = { | |
"image": "<image>", | |
"video": "<vila/video>", | |
} | |
# from llava.model.utils import packing | |
# from llava.utils.logging import logger | |
# from llava.utils.tokenizer import infer_stop_tokens | |
DUMMY_CONVERSATION = [ | |
{"from": "human", "value": "question"}, | |
{"from": "gpt", "value": "answer"}, | |
] * 10 | |
def tokenizer_image_token(prompt, tokenizer, return_tensors=None): | |
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0] | |
def has_tokenizer(repo_id_or_path: str) -> bool: | |
# Check if the tokenizer is in a local directory | |
if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")): | |
return True | |
# Check if the tokenizer is in a Hugging Face Hub repo | |
try: | |
return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json") | |
except HFValidationError: | |
return False | |
def _maybe_add_sentinel_token(tokenizer: transformers.PreTrainedTokenizer) -> None: | |
if not hasattr(tokenizer, "sentinel_token"): | |
tokenizer.add_tokens([SENTINEL_TOKEN], special_tokens=True) | |
tokenizer.sentinel_token = SENTINEL_TOKEN | |
tokenizer.sentinel_token_id = tokenizer.convert_tokens_to_ids(SENTINEL_TOKEN) | |
def tokenize_conversation_legacy( | |
messages: Sequence[Dict[str, str]], | |
tokenizer: transformers.PreTrainedTokenizer, | |
add_generation_prompt: bool = False, | |
overrides: Optional[Dict[str, str]] = None, | |
no_system_prompt: bool = False, | |
) -> torch.Tensor: | |
conv = default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
if no_system_prompt: | |
conv.system = "" | |
# Skip the first message if it is not from human | |
if messages[0]["from"] != "human": | |
messages = messages[1:] | |
# Add a generation prompt if needed | |
if add_generation_prompt: | |
messages.append({"from": "gpt", "value": None}) | |
conv.messages = [] | |
for turn, message in enumerate(messages): | |
role = roles[message["from"]] | |
assert role == conv.roles[turn % 2] | |
if overrides is not None and message["from"] in overrides: | |
conv.append_message(role, overrides[message["from"]]) | |
else: | |
conv.append_message(role, message["value"]) | |
return tokenizer_image_token(conv.get_prompt(), tokenizer, return_tensors="pt") | |
def tokenize_conversation( | |
messages: Sequence[Dict[str, str]], | |
tokenizer: transformers.PreTrainedTokenizer, | |
add_generation_prompt: bool = False, | |
overrides: Optional[Dict[str, str]] = None, | |
no_system_prompt: bool = False, | |
) -> torch.Tensor: | |
# Normalize the conversation before tokenization | |
for message in messages: | |
message["value"] = message["value"].strip() | |
if default_conversation.sep_style != SeparatorStyle.AUTO: | |
return tokenize_conversation_legacy( | |
messages, | |
tokenizer, | |
add_generation_prompt=add_generation_prompt, | |
overrides=overrides, | |
no_system_prompt=no_system_prompt, | |
) | |
conversation = [] | |
for m in messages: | |
message = {} | |
if m["from"] == "human": | |
message["role"] = "user" | |
elif m["from"] == "gpt": | |
message["role"] = "assistant" | |
else: | |
raise ValueError(f"Unexpected sender '{m['from']}' in conversation entry.") | |
message["content"] = m["value"] | |
if overrides is not None and m["from"] in overrides: | |
message["content"] = overrides[m["from"]] | |
conversation.append(message) | |
if no_system_prompt: | |
conversation = [{"role": "system", "content": ""}] + conversation | |
text = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=add_generation_prompt, | |
tokenize=False, | |
) | |
return tokenizer_image_token(text, tokenizer, return_tensors="pt") | |
def infer_stop_tokens(tokenizer: transformers.PreTrainedTokenizer) -> List[str]: | |
_maybe_add_sentinel_token(tokenizer) | |
template = tokenize_conversation(DUMMY_CONVERSATION, tokenizer, overrides={"gpt": SENTINEL_TOKEN}) | |
stop_tokens = {tokenizer.eos_token} | |
for k in range(template.size(0) - 1): | |
if template[k] == tokenizer.sentinel_token_id: | |
stop_token = tokenizer.decode(template[k + 1]) | |
stop_tokens.add(stop_token) | |
return list(stop_tokens) | |
def context_length_extension(config): | |
orig_ctx_len = getattr(config, "max_position_embeddings", None) | |
model_max_length = getattr(config, "model_max_length", None) | |
if orig_ctx_len and model_max_length > orig_ctx_len: | |
print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}") | |
scaling_factor = float(math.ceil(model_max_length / orig_ctx_len)) | |
config.rope_scaling = {"type": "linear", "factor": scaling_factor} | |
return config | |
def build_llm_and_tokenizer( | |
model_name_or_path: str, | |
config: PretrainedConfig, | |
attn_implementation=None, | |
model_max_length=None, | |
*args, | |
**kwargs, | |
) -> Tuple[PreTrainedModel, PreTrainedTokenizer]: | |
# print(model_name_or_path) | |
llm_cfg = AutoConfig.from_pretrained(model_name_or_path) | |
llm_cfg._attn_implementation = attn_implementation | |
llm_cfg.model_max_length = model_max_length | |
if model_max_length is not None: | |
context_length_extension(llm_cfg) | |
# Quantization related | |
quantization_restore_from_checkpoint = False | |
if quantization_restore_from_checkpoint: | |
fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None) | |
llm = AutoModelForCausalLM.from_pretrained( | |
fp8_model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs | |
) | |
else: | |
kwargs.pop("device_map") | |
llm = AutoModelForCausalLM.from_pretrained( | |
model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs | |
) | |
# NOTE(ligeng): not sure whether it affects the training | |
# packing.patch(llm) | |
# Locate the tokenizer. | |
llm_path = model_name_or_path | |
if not has_tokenizer(llm_path): | |
llm_path = osp.join(llm_path, "llm") | |
if not has_tokenizer(llm_path): | |
raise ValueError(f"Cannot find tokenizer in {llm_path}.") | |
tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False) | |
if model_max_length is not None: | |
tokenizer.model_max_length = model_max_length | |
# Load chat template if specified. | |
if getattr(config, "chat_template", None) is not None: | |
print(f"Using chat template: {config.chat_template}") | |
fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja") | |
with open(fpath) as fd: | |
chat_template = fd.read() | |
tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "") | |
# NOTE(ligeng): disable temporarially, let see will any bugs introduce | |
# Set stop tokens for the tokenizer | |
tokenizer.stop_tokens = infer_stop_tokens(tokenizer) | |
tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens) | |
# Add media tokens to the tokenizer | |
tokenizer.media_tokens = MEDIA_TOKENS | |
tokenizer.media_token_ids = {} | |
for name, token in MEDIA_TOKENS.items(): | |
tokenizer.add_tokens([token], special_tokens=True) | |
tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token) | |
# TODO(ligeng): is this necessary for llava? | |
config.hidden_size = llm.config.hidden_size | |
return llm, tokenizer | |