File size: 20,872 Bytes
06b6ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import copy
import os
import os.path as osp
import warnings
from collections import defaultdict
from io import BytesIO
from typing import List, Optional, Union
import PIL.Image
import requests
import torch
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoProcessor, AutoTokenizer
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput, VideoInput
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from .constants import DEFAULT_IMAGE_TOKEN, MEDIA_TOKENS
from .media import Image, Video, extract_media
from .mm_utils import process_image, process_images
from .tokenizer_utils import tokenize_conversation
def to_rgb(pil_image: PIL.Image.Image) -> PIL.Image.Image:
if pil_image.mode == "RGBA":
white_background = PIL.Image.new("RGB", pil_image.size, (255, 255, 255))
white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask
return white_background
else:
return pil_image.convert("RGB")
def fetch_image(ele: dict[str, str | PIL.Image.Image], size_factor=None) -> PIL.Image.Image:
if "image" in ele:
image = ele["image"]
else:
image = ele["image_url"]
image_obj = None
if isinstance(image, PIL.Image.Image):
image_obj = image
elif image.startswith("http://") or image.startswith("https://"):
response = requests.get(image, stream=True)
image_obj = PIL.Image.open(BytesIO(response.content))
elif image.startswith("file://"):
image_obj = PIL.Image.open(image[7:])
elif image.startswith("data:image"):
if "base64," in image:
_, base64_data = image.split("base64,", 1)
data = base64.b64decode(base64_data)
image_obj = PIL.Image.open(BytesIO(data))
else:
image_obj = PIL.Image.open(image)
if image_obj is None:
raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}")
image = to_rgb(image_obj)
return image
def fetch_image_url_or_fpath(url_or_fpath):
if url_or_fpath.startswith("http") or url_or_fpath.startswith("https"):
import tempfile
import requests
# Download the image to a temporary file
temp_dir = tempfile.mkdtemp()
temp_file = os.path.join(temp_dir, os.path.basename(url_or_fpath))
response = requests.get(url_or_fpath, stream=True)
response.raise_for_status()
with open(temp_file, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return temp_file
elif url_or_fpath.startswith("file://"):
fpath = url_or_fpath.replace("file://", "")
assert osp.exists(fpath), f"File {fpath} does not exist"
return fpath
elif osp.exists(url_or_fpath):
assert osp.isfile(url_or_fpath), f"File {url_or_fpath} does not exist"
return url_or_fpath
else:
raise ValueError(f"Unsupported image path: {url_or_fpath}")
def pad_fn(input_ids_list: List[torch.Tensor], padding_value=0, target_len=None, padding_side="left") -> torch.Tensor:
# tensor shape is (batch_size, seq_len)
max_len = max([ids.shape[1] for ids in input_ids_list])
if target_len is not None:
assert target_len >= max_len, "target_len must be greater than or equal to max_len"
max_len = target_len
new_input_ids_list = []
for i, input_ids in enumerate(input_ids_list):
pad_tensor = torch.ones_like(input_ids) * padding_value
curr_len = input_ids.shape[1]
pad_tensor = pad_tensor[:, : max_len - curr_len]
if padding_side == "right":
input_ids = torch.cat((input_ids, pad_tensor), dim=1)
else:
input_ids = torch.cat((pad_tensor, input_ids), dim=1)
new_input_ids_list.append(input_ids)
return torch.cat(new_input_ids_list, dim=0)
def extract_value_from_conv(chat):
value = []
if isinstance(chat["content"], str):
# vila_chat["value"].append(chat["content"])
value.append(chat["content"])
return value
# otherwise, it's a list of content
for content in chat["content"]:
if content["type"] == "image":
if "path" in content:
# VILA style, can be either filepath or http url
value.append(Image(fetch_image_url_or_fpath(content["path"])))
elif "image" in content:
# Qwen style
value.append(Image(fetch_image_url_or_fpath(content["image"])))
elif "image_pil" in content:
# Qwen style
assert isinstance(content["image_pil"], PIL.Image.Image), f"Type of {media_key} must be PIL.Image.Image"
value.append(content["image_pil"])
else:
raise ValueError(f"Type = `image` , but no `path` or `image` in | {content=}, {conversation=}")
elif content["type"] == "video":
if "video" in content:
# Qwen style
value.append(Video(fetch_image_url_or_fpath(content["video"])))
else:
raise ValueError(f"Type = `video` , but no `video` in | {content=}, {conversation=}")
elif content["type"] == "text":
value.append(content["text"])
# NOTE(ligeng): video supports are needed here
else:
raise ValueError(f"Unsupported content type: {content['type']}")
return value
class VILAProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class VILAProcessor(ProcessorMixin):
# attributes = ["image_processor", "tokenizer"]
attributes = []
# valid_kwargs = ["chat_template"]
valid_kwargs = []
# image_processor_class = "VILAImageProcessor"
# tokenizer_class = ("VILATokenizer", "VILATokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, config=None, padding_side="left", **kwargs):
self.image_token = MEDIA_TOKENS["image"]
self.video_token = MEDIA_TOKENS["video"]
self.config = config
self.image_processor = image_processor
self.tokenizer = tokenizer
self.padding_side = padding_side
# This is a special setting for Qwen.
# self.pad_token_id = tokenizer.pad_token_id
self.pad_token_id = self.tokenizer("<|endoftext|>").input_ids[0] # 151643
self.eos_token_id = self.tokenizer.eos_token_id
super().__init__(image_processor, tokenizer, chat_template=chat_template)
@staticmethod
def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]:
"""
referernce from qwen_vl_utils
"""
vision_infos = []
if isinstance(conversations[0], dict):
conversations = [conversations]
for conversation in conversations:
for message in conversation:
if isinstance(message["content"], list):
for ele in message["content"]:
if (
"image" in ele
or "image_url" in ele
or "video" in ele
or ele["type"] in ("image", "image_url", "video")
):
vision_infos.append(ele)
return vision_infos
@staticmethod
def process_vision_info(
conversations: list[dict] | list[list[dict]],
return_video_kwargs: bool = False,
) -> tuple[list[PIL.Image.Image] | None, list[torch.Tensor | list[PIL.Image.Image]] | None, Optional[dict]]:
"""
referernce from qwen_vl_utils
NVILA does not depend on the function, but the interface is the same.
"""
vision_infos = extract_vision_info(conversations)
## Read images or videos
image_inputs = []
video_inputs = []
video_sample_fps_list = []
for vision_info in vision_infos:
if "image" in vision_info or "image_url" in vision_info:
image_inputs.append(fetch_image(vision_info))
elif "video" in vision_info:
video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True)
video_sample_fps_list.append(video_sample_fps)
video_inputs.append(video_input)
else:
raise ValueError("image, image_url or video should in content.")
if len(image_inputs) == 0:
image_inputs = None
if len(video_inputs) == 0:
video_inputs = None
if return_video_kwargs:
return image_inputs, video_inputs, {"fps": video_sample_fps_list}
return image_inputs, video_inputs
@staticmethod
def move_data_to_device(cls, prompt_inputs):
def _move_data_to_device(item):
# wrap function grpo trainer _prepare_input
kwargs = {"device": cls.args.device}
if cls.is_deepspeed_enabled and (torch.is_floating_point(item) or torch.is_complex(item)):
kwargs.update({"dtype": cls.accelerator.state.deepspeed_plugin.hf_ds_config.dtype()})
return item.to(**kwargs)
prompt_inputs.input_ids = _move_data_to_device(prompt_inputs.input_ids)
prompt_inputs.attention_mask = _move_data_to_device(prompt_inputs.attention_mask)
if "image" in prompt_inputs.media:
prompt_inputs.media["image"] = [_move_data_to_device(img) for img in prompt_inputs.media["image"]]
return prompt_inputs
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
padding_side = kwargs.get("padding_side", "left")
if os.path.isdir(pretrained_model_name_or_path):
pretrained_model_name_or_path = pretrained_model_name_or_path
else:
print(f"pretrained_model_name_or_path {pretrained_model_name_or_path} is not a directory, downloading")
from huggingface_hub import snapshot_download
pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)
image_processor = AutoImageProcessor.from_pretrained(
osp.join(pretrained_model_name_or_path, "vision_tower"), trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
osp.join(pretrained_model_name_or_path, "llm"), trust_remote_code=True
)
config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
return cls(image_processor=image_processor, tokenizer=tokenizer, config=config, padding_side=padding_side)
def __repr__(self):
# NOTE(ligeng): hard coded image_processor to avoid serialization error. Dirty fix
return f"VILAProcessor(image_processor=SigLip, tokenizer={self.tokenizer}, config={self.config})"
def __call__(
self,
conversation=None,
**kwargs: Unpack[VILAProcessorKwargs],
) -> BatchFeature:
"""
The `conv` will be look like
[
{
'from': 'human',
'value': [
<transformers_modules.NVILA-Lite-2B-hf-preview.media.Image object at 0x154e68e4c460>,
'What are the common elements in these pictures?'
]
}
]
and `conversation` will be a list of such `conv`s
"""
if kwargs.get("text", None) is not None:
conversation = kwargs.get("text")
assert conversation is not None, "`conversation` or `text` is required"
padding_side = kwargs.get("padding_side", self.padding_side)
input_ids_list = []
attention_mask = []
media = defaultdict(list)
media_config = defaultdict(dict)
for conv in conversation:
feat = self.__single_call__(conv, **kwargs)
input_ids_list.append(feat.input_ids)
attention_mask.append(feat.attention_mask)
for name in feat.media:
media[name] += feat.media[name]
for name in feat.media_config:
media_config[name].update(feat.media_config[name])
# pad the input_ids to batchfy
input_ids = pad_fn(
input_ids_list,
padding_value=self.pad_token_id,
padding_side=padding_side,
)
# ignore the pad token in the attention mask
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
attention_mask[input_ids == self.pad_token_id] = False
# print("[DEBUGAAA]", self.pad_token_id, self.tokenizer.pad_token_id); exit(0)
input_texts = self.tokenizer.batch_decode(input_ids)
bdata = BatchFeature(
data={
# "input_texts": input_texts,
"input_ids": input_ids,
"attention_mask": attention_mask,
"media": media,
"media_config": media_config,
}
)
# NOTE: hard coded to cuda
# bdata.input_ids = bdata.input_ids.cuda()
# bdata.attention_mask = bdata.attention_mask.cuda()
# bdata.media["image"] = [img.cuda() for img in bdata.media["image"]]
return bdata
def __single_call__(
self,
conversation,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
videos: VideoInput = None,
**kwargs: Unpack[VILAProcessorKwargs],
) -> BatchFeature:
# TODO: should be merged with llava_arch.py/generate_content()
# TODO (extract and preprocess should be done together, as the preprocess of image and video can be different, i.e. when dynamic res is used)
conversation = copy.deepcopy(conversation)
media = extract_media(conversation, self.config)
# Process media
media_config = defaultdict(dict)
for name in media:
if name == "image":
if len(media["image"]) == 1 and self.config.image_aspect_ratio in ["dynamic", "dynamic_s2"]:
self.config.image_processor = self.image_processor
if self.config.image_aspect_ratio == "dynamic":
images = process_image(media["image"][0], self.config, None, enable_dynamic_res=True).half()
# print("DEBUG", len(images)); input()
# NOTE: this only works for images appears at the first conversation
conversation[0]["value"] = conversation[0]["value"].replace(
DEFAULT_IMAGE_TOKEN, f"{DEFAULT_IMAGE_TOKEN}\n" * images.shape[0]
)
else:
if type(self.config.s2_scales) is str:
self.config.s2_scales = list(map(int, self.config.s2_scales.split(",")))
images, block_sizes = process_image(
media["image"][0], self.config, None, enable_dynamic_s2=True
)
images = images.half()
media_config[name]["block_sizes"] = [block_sizes]
else:
images = process_images(media["image"], self.vision_tower.image_processor, self.config).half()
media[name] = [image for image in images]
elif name == "video":
media[name] = [
process_images(images, self.image_processor, self.config).half()
for images in media[name]
]
else:
raise ValueError(f"Unsupported media type: {name}")
inputs = tokenize_conversation(conversation, self.tokenizer, add_generation_prompt=True, return_ids_only=False)
input_ids = inputs.input_ids[0].unsqueeze(0) #.cuda()
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
return BatchFeature(
data={
"input_ids": input_ids,
"attention_mask": attention_mask,
"media": media,
"media_config": media_config,
}
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def post_process_image_text_to_text(self, generated_outputs):
"""
Post-process the output of the model to decode the text.
Args:
generated_outputs (`torch.Tensor` or `np.ndarray`):
The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)`
or `(sequence_length,)`.
Returns:
`List[str]`: The decoded text.
"""
return self.tokenizer.batch_decode(
generated_outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def convert_gpt_conv_to_vila_conv(self, conversation):
vila_conv = []
for chat in conversation:
vila_chat = {"from": "", "value": []}
if chat["role"] in ("user", "system"):
# user allows to input image and text
vila_chat["from"] = "human" if chat["role"] == "user" else "system"
vila_chat["value"] = extract_value_from_conv(chat)
elif chat["role"] == "assistant":
vila_chat["from"] = "gpt"
vila_chat["value"] = extract_value_from_conv(chat)
else:
raise ValueError(f"Unsupported role: {chat['role']} in chat {chat}")
vila_conv.append(vila_chat)
return vila_conv
def apply_chat_template(self, conversation, add_generation_prompt=True, **kwargs):
return self.convert_gpt_conv_to_vila_conv(conversation)
if __name__ == "__main__":
# gpt style: user, assistant
# vila style: human, gpt
gpt_conv = [
{
"role": "user",
"content": [
{"type": "image", "path": "demo_images/demo_img_1.png"},
{"type": "text", "text": "Describe this image."},
],
}
]
llavaconv = [
{
"from": "human",
"value": [
PIL.Image.open("demo_images/demo_img_1.png"),
"Describe this image.",
],
}
]
processor = AutoProcessor.from_pretrained(output_dir, trust_remote_code=True)
inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
# model = llava.load("Efficient-Large-Model/qwen25_2B_3x3-sft").cuda()
# print(model)
model_path = "NVILA-Lite-2B-hf-preview"
model = AutoModel.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# res = model.generate_content(["how are you today?"])
# print(model.config)
# print(model.tokenizer)
# print(res)
processor = VILAProcessor(
config=model.config,
image_processor=model.vision_tower.image_processor,
tokenizer=model.tokenizer,
)
# TODO: add padding, return_tensors,
inputs = processor(conversation=llavaconv, padding=True, return_tensors="pt")
print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
print("vila conv pass")
inputs = processor.apply_chat_template(conversation=gpt_conv, padding=True, return_tensors="pt")
print(inputs.keys(), inputs.input_ids.shape, [_.shape for _ in inputs.image])
print("gpt conv pass")
output_ids = model.generate(
input_ids=inputs.input_ids,
media={
"image": inputs.image,
},
media_config={"image": {}},
generation_config=model.generation_config,
max_new_tokens=100,
)
print(output_ids)
|