Tingquan commited on
Commit
282628b
·
verified ·
1 Parent(s): bee4e49

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: PaddleOCR
4
+ language:
5
+ - en
6
+ - zh
7
+ pipeline_tag: image-to-text
8
+ tags:
9
+ - OCR
10
+ - PaddlePaddle
11
+ - PaddleOCR
12
+ ---
13
+
14
+ # PP-Chart2Table
15
+
16
+ ## Introduction
17
+
18
+ PP-Chart2Table is a SOTA multimodal model developed by the PaddlePaddle team, specializing in chart parsing for both Chinese and English. Its high performance is driven by a novel "Shuffled Chart Data Retrieval" training task, which, combined with a refined token masking strategy, significantly improves its efficiency in converting charts to data tables. The model is further strengthened by an advanced data synthesis pipeline that uses high-quality seed data, RAG, and LLMs persona design to create a richer, more diverse training set. To address the challenge of large-scale unlabeled, out-of-distribution (OOD) data, the team implemented a two-stage distillation process, ensuring robust adaptability and generalization on real-world data. In-house benchmarks demonstrate that PP-Chart2Table not only outperforms models of a similar scale but also achieves performance on par with 7-billion parameter Vision Language Models (VLMs) in critical application scenarios.
19
+
20
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/IsYzsgw5f8ehK4zn9IP1x.png"/>
21
+
22
+
23
+ ## Quick Start
24
+
25
+ ### Installation
26
+
27
+ 1. PaddlePaddle
28
+
29
+ Please refer to the following commands to install PaddlePaddle using pip:
30
+
31
+ ```bash
32
+ # for CUDA11.8
33
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu118/
34
+
35
+ # for CUDA12.6
36
+ python -m pip install paddlepaddle-gpu==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cu126/
37
+
38
+ # for CPU
39
+ python -m pip install paddlepaddle==3.0.0 -i https://www.paddlepaddle.org.cn/packages/stable/cpu/
40
+ ```
41
+
42
+ For details about PaddlePaddle installation, please refer to the [PaddlePaddle official website](https://www.paddlepaddle.org.cn/en/install/quick).
43
+
44
+ 2. PaddleX
45
+
46
+ Install the latest version of the PaddleX inference package from PyPI:
47
+
48
+ ```bash
49
+ python -m pip install paddlex && python -m pip install "paddlex[multimodal]"
50
+ ```
51
+
52
+ ### Model Usage
53
+
54
+ You can integrate the model inference of PP-Chart2Table into your project. Before running the following code, please download the sample image to your local machine.
55
+
56
+ ```python
57
+ from paddlex import create_model
58
+ model = create_model('PP-Chart2Table')
59
+ results = model.predict(
60
+ input={"image": "https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/OrlFuIXQUhO3Fg1G9_H1u.png"},
61
+ batch_size=1
62
+ )
63
+ for res in results:
64
+ res.print()
65
+ res.save_to_json(f"./output/res.json")
66
+ ```
67
+
68
+ After running, the obtained result is as follows:
69
+
70
+ ```bash
71
+ {'res': {'image': 'https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/OrlFuIXQUhO3Fg1G9_H1u.png', 'result': 'Agency | Favorable | Not Sure | Unfavorable\nNational Park Service | 81% | 12% | 7%\nU.S. Postal Service | 77% | 3% | 20%\nNASA | 74% | 17% | 9%\nSocial Security Administration | 61% | 12% | 28%\nCDC | 56% | 6% | 38%\nVeterans Affairs | 56% | 16% | 28%\nEPA | 55% | 14% | 31%\nHealth and Human Services | 55% | 15% | 30%\nFBI | 52% | 12% | 36%\nDepartment of Transportation | 52% | 12% | 36%\nDepartment of Homeland Security | 51% | 18% | 35%\nDepartment of Justice | 49% | 10% | 41%\nCIA | 46% | 21% | 33%\nDepartment of Education | 45% | 8% | 47%\nFederal Reserve | 43% | 20% | 37%\nIRS | 42% | 7% | 51%'}}
72
+ ```
73
+
74
+ The visualized result is as follows:
75
+
76
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/vxlQiD7IGA4n9U7eJFUJo.png"/>
77
+
78
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleX/latest/en/module_usage/tutorials/vlm_modules/chart_parsing.html#iii-quick-integration).
79
+
80
+ ### Pipeline Usage
81
+
82
+ The ability of a single model is limited. But the pipeline consists of several models can provide more capacity to resolve difficult problems in real-world scenarios.
83
+
84
+ #### PP-StructureV3
85
+
86
+ Layout analysis is a technique used to extract structured information from document images. PP-StructureV3 includes the following seven modules:
87
+ * Layout Detection Module
88
+ * Chart Recognition Module(Optional)
89
+ * General OCR Sub-pipeline
90
+ * Document Image Preprocessing Sub-pipeline (Optional)
91
+ * Table Recognition Sub-pipeline (Optional)
92
+ * Seal Recognition Sub-pipeline (Optional)
93
+ * Formula Recognition Sub-pipeline (Optional)
94
+
95
+ You can quickly experience the PP-StructureV3 pipeline with a single command.
96
+
97
+ ```bash
98
+ paddleocr pp_structurev3 --chart_recognition_model_name PP-Chart2Table \
99
+ --use_chart_recognition True \
100
+ -i https://cdn-uploads.huggingface.co/production/uploads/684acf07de103b2d44c85531/Mk1PKgszCEEutZukT3FPB.png
101
+ ```
102
+
103
+ You can experience the inference of the pipeline with just a few lines of code. Taking the PP-StructureV3 pipeline as an example:
104
+
105
+ ```python
106
+ from paddleocr import PPStructureV3
107
+
108
+ pipeline = PPStructureV3(chart_recognition_model_name="PP-Chart2Table", use_chart_recognition=True)
109
+ # ocr = PPStructureV3(use_doc_orientation_classify=True) # Use use_doc_orientation_classify to enable/disable document orientation classification model
110
+ # ocr = PPStructureV3(use_doc_unwarping=True) # Use use_doc_unwarping to enable/disable document unwarping module
111
+ # ocr = PPStructureV3(use_textline_orientation=True) # Use use_textline_orientation to enable/disable textline orientation classification model
112
+ # ocr = PPStructureV3(device="gpu") # Use device to specify GPU for model inference
113
+ output = pipeline.predict("./Mk1PKgszCEEutZukT3FPB.png", use_chart_recognition=True)
114
+ for res in output:
115
+ res.print() ## Print the structured prediction output
116
+ res.save_to_json(save_path="output") ## Save the current image's structured result in JSON format
117
+ res.save_to_markdown(save_path="output") ## Save the current image's result in Markdown format
118
+ ```
119
+
120
+ The default model used in pipeline is `PP-Chart2Table`, so you don't have to specify `PP-Chart2Table` for the `chart_recognition_model_name argument`, but you can use the local model file by argument `chart_recognition_model_dir`.
121
+ For details about usage command and descriptions of parameters, please refer to the [Document](https://paddlepaddle.github.io/PaddleOCR/latest/en/version3.x/pipeline_usage/PP-StructureV3.html#2-quick-start).
122
+
123
+ ## Links
124
+
125
+ [PaddleOCR Repo](https://github.com/paddlepaddle/paddleocr)
126
+
127
+ [PaddleOCR Documentation](https://paddlepaddle.github.io/PaddleOCR/latest/en/index.html)
128
+
129
+ [PaddleX Repo](https://github.com/paddlepaddle/paddlex)
130
+
131
+ [PaddleX Documentation](https://paddlepaddle.github.io/PaddleX/latest/en/index.html)