--- license: mit --- This model is DPR trained on MS MARCO. The training details and evaluation results are as follows: |Model|Pretrain Model|Train w/ Marco Title|Marco Dev MRR@10|BEIR Avg NDCG@10| |:----|:----|:----|:----|:----| |DPR|bert-base-uncased|w/|32.4|35.5| |BERI Dataset|NDCG@10| |:----|:----| |TREC-COVID|58.8| |NFCorpus|23.4| |FiQA|20.6| |ArguAna|39.4| |Touché-2020|22.3| |Quora|78.0| |SCIDOCS|11.9| |SciFact|49.4| |NQ|43.9| |HotpotQA|45.3| |Signal-1M|20.2| |TREC-NEWS|31.8| |DBPedia-entity|28.7| |Fever|65.0| |Climate-Fever|14.9| |BioASQ|24.1| |Robust04|32.3| |CQADupStack|28.3| The implementation is the same as our EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele. ``` @inproceedings{sun2022ancetele, title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives}, author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao}, booktitle={Proceedings of EMNLP 2022}, year={2022} } ```