mihaimasala commited on
Commit
acfc1be
·
verified ·
1 Parent(s): 60595c4

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +717 -760
README.md CHANGED
@@ -1,761 +1,718 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - mistralai/Mistral-7B-v0.1
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- model-index:
18
- - name: OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09
19
- results:
20
- - task:
21
- type: text-generation
22
- dataset:
23
- name: RoMT-Bench
24
- type: RoMT-Bench
25
- metrics:
26
- - name: Score
27
- type: Score
28
- value: 5.29
29
- - task:
30
- type: text-generation
31
- dataset:
32
- name: RoCulturaBench
33
- type: RoCulturaBench
34
- metrics:
35
- - name: Score
36
- type: Score
37
- value: 3.99
38
- - task:
39
- type: text-generation
40
- dataset:
41
- name: Romanian_Academic_Benchmarks
42
- type: Romanian_Academic_Benchmarks
43
- metrics:
44
- - name: Average accuracy
45
- type: accuracy
46
- value: 52.91
47
- - task:
48
- type: text-generation
49
- dataset:
50
- name: OpenLLM-Ro/ro_arc_challenge
51
- type: OpenLLM-Ro/ro_arc_challenge
52
- metrics:
53
- - name: Average accuracy
54
- type: accuracy
55
- value: 52.27
56
- - task:
57
- type: text-generation
58
- dataset:
59
- name: OpenLLM-Ro/ro_mmlu
60
- type: OpenLLM-Ro/ro_mmlu
61
- metrics:
62
- - name: Average accuracy
63
- type: accuracy
64
- value: 49.33
65
- - task:
66
- type: text-generation
67
- dataset:
68
- name: OpenLLM-Ro/ro_winogrande
69
- type: OpenLLM-Ro/ro_winogrande
70
- metrics:
71
- - name: Average accuracy
72
- type: accuracy
73
- value: 70.03
74
- - task:
75
- type: text-generation
76
- dataset:
77
- name: OpenLLM-Ro/ro_hellaswag
78
- type: OpenLLM-Ro/ro_hellaswag
79
- metrics:
80
- - name: Average accuracy
81
- type: accuracy
82
- value: 62.88
83
- - task:
84
- type: text-generation
85
- dataset:
86
- name: OpenLLM-Ro/ro_gsm8k
87
- type: OpenLLM-Ro/ro_gsm8k
88
- metrics:
89
- - name: Average accuracy
90
- type: accuracy
91
- value: 32.42
92
- - task:
93
- type: text-generation
94
- dataset:
95
- name: OpenLLM-Ro/ro_truthfulqa
96
- type: OpenLLM-Ro/ro_truthfulqa
97
- metrics:
98
- - name: Average accuracy
99
- type: accuracy
100
- value: 50.51
101
- - task:
102
- type: text-generation
103
- dataset:
104
- name: LaRoSeDa_binary
105
- type: LaRoSeDa_binary
106
- metrics:
107
- - name: Average macro-f1
108
- type: macro-f1
109
- value: 95.56
110
- - task:
111
- type: text-generation
112
- dataset:
113
- name: LaRoSeDa_multiclass
114
- type: LaRoSeDa_multiclass
115
- metrics:
116
- - name: Average macro-f1
117
- type: macro-f1
118
- value: 67.83
119
- - task:
120
- type: text-generation
121
- dataset:
122
- name: LaRoSeDa_binary_finetuned
123
- type: LaRoSeDa_binary_finetuned
124
- metrics:
125
- - name: Average macro-f1
126
- type: macro-f1
127
- value: 99.00
128
- - task:
129
- type: text-generation
130
- dataset:
131
- name: LaRoSeDa_multiclass_finetuned
132
- type: LaRoSeDa_multiclass_finetuned
133
- metrics:
134
- - name: Average macro-f1
135
- type: macro-f1
136
- value: 87.57
137
- - task:
138
- type: text-generation
139
- dataset:
140
- name: WMT_EN-RO
141
- type: WMT_EN-RO
142
- metrics:
143
- - name: Average bleu
144
- type: bleu
145
- value: 28.28
146
- - task:
147
- type: text-generation
148
- dataset:
149
- name: WMT_RO-EN
150
- type: WMT_RO-EN
151
- metrics:
152
- - name: Average bleu
153
- type: bleu
154
- value: 6.10
155
- - task:
156
- type: text-generation
157
- dataset:
158
- name: WMT_EN-RO_finetuned
159
- type: WMT_EN-RO_finetuned
160
- metrics:
161
- - name: Average bleu
162
- type: bleu
163
- value: 27.70
164
- - task:
165
- type: text-generation
166
- dataset:
167
- name: WMT_RO-EN_finetuned
168
- type: WMT_RO-EN_finetuned
169
- metrics:
170
- - name: Average bleu
171
- type: bleu
172
- value: 40.36
173
- - task:
174
- type: text-generation
175
- dataset:
176
- name: XQuAD
177
- type: XQuAD
178
- metrics:
179
- - name: Average exact_match
180
- type: exact_match
181
- value: 41.09
182
- - task:
183
- type: text-generation
184
- dataset:
185
- name: XQuAD
186
- type: XQuAD
187
- metrics:
188
- - name: Average f1
189
- type: f1
190
- value: 63.21
191
- - task:
192
- type: text-generation
193
- dataset:
194
- name: XQuAD_finetuned
195
- type: XQuAD_finetuned
196
- metrics:
197
- - name: Average exact_match
198
- type: exact_match
199
- value: 47.56
200
- - task:
201
- type: text-generation
202
- dataset:
203
- name: XQuAD_finetuned
204
- type: XQuAD_finetuned
205
- metrics:
206
- - name: Average f1
207
- type: f1
208
- value: 62.69
209
- - task:
210
- type: text-generation
211
- dataset:
212
- name: STS
213
- type: STS
214
- metrics:
215
- - name: Average spearman
216
- type: spearman
217
- value: 78.47
218
- - task:
219
- type: text-generation
220
- dataset:
221
- name: STS
222
- type: STS
223
- metrics:
224
- - name: Average pearson
225
- type: pearson
226
- value: 77.24
227
- - task:
228
- type: text-generation
229
- dataset:
230
- name: STS_finetuned
231
- type: STS_finetuned
232
- metrics:
233
- - name: Average spearman
234
- type: spearman
235
- value: 87.28
236
- - task:
237
- type: text-generation
238
- dataset:
239
- name: STS_finetuned
240
- type: STS_finetuned
241
- metrics:
242
- - name: Average pearson
243
- type: pearson
244
- value: 87.88
245
- - task:
246
- type: text-generation
247
- dataset:
248
- name: RoMT-Bench
249
- type: RoMT-Bench
250
- metrics:
251
- - name: First turn
252
- type: Score
253
- value: 5.86
254
- - name: Second turn
255
- type: Score
256
- value: 4.72
257
- - task:
258
- type: text-generation
259
- dataset:
260
- name: OpenLLM-Ro/ro_arc_challenge
261
- type: OpenLLM-Ro/ro_arc_challenge
262
- metrics:
263
- - name: 0-shot
264
- type: accuracy
265
- value: 52.10
266
- - name: 1-shot
267
- type: accuracy
268
- value: 49.87
269
- - name: 3-shot
270
- type: accuracy
271
- value: 51.76
272
- - name: 5-shot
273
- type: accuracy
274
- value: 52.10
275
- - name: 10-shot
276
- type: accuracy
277
- value: 53.64
278
- - name: 25-shot
279
- type: accuracy
280
- value: 54.16
281
- - task:
282
- type: text-generation
283
- dataset:
284
- name: OpenLLM-Ro/ro_mmlu
285
- type: OpenLLM-Ro/ro_mmlu
286
- metrics:
287
- - name: 0-shot
288
- type: accuracy
289
- value: 43.86
290
- - name: 1-shot
291
- type: accuracy
292
- value: 47.70
293
- - name: 3-shot
294
- type: accuracy
295
- value: 52.48
296
- - name: 5-shot
297
- type: accuracy
298
- value: 53.29
299
- - task:
300
- type: text-generation
301
- dataset:
302
- name: OpenLLM-Ro/ro_winogrande
303
- type: OpenLLM-Ro/ro_winogrande
304
- metrics:
305
- - name: 0-shot
306
- type: accuracy
307
- value: 68.27
308
- - name: 1-shot
309
- type: accuracy
310
- value: 69.30
311
- - name: 3-shot
312
- type: accuracy
313
- value: 70.56
314
- - name: 5-shot
315
- type: accuracy
316
- value: 71.98
317
- - task:
318
- type: text-generation
319
- dataset:
320
- name: OpenLLM-Ro/ro_hellaswag
321
- type: OpenLLM-Ro/ro_hellaswag
322
- metrics:
323
- - name: 0-shot
324
- type: accuracy
325
- value: 63.03
326
- - name: 1-shot
327
- type: accuracy
328
- value: 62.39
329
- - name: 3-shot
330
- type: accuracy
331
- value: 62.54
332
- - name: 5-shot
333
- type: accuracy
334
- value: 62.95
335
- - name: 10-shot
336
- type: accuracy
337
- value: 63.47
338
- - task:
339
- type: text-generation
340
- dataset:
341
- name: OpenLLM-Ro/ro_gsm8k
342
- type: OpenLLM-Ro/ro_gsm8k
343
- metrics:
344
- - name: 1-shot
345
- type: accuracy
346
- value: 25.47
347
- - name: 3-shot
348
- type: accuracy
349
- value: 33.06
350
- - name: 5-shot
351
- type: accuracy
352
- value: 38.74
353
- - task:
354
- type: text-generation
355
- dataset:
356
- name: LaRoSeDa_binary
357
- type: LaRoSeDa_binary
358
- metrics:
359
- - name: 0-shot
360
- type: macro-f1
361
- value: 88.87
362
- - name: 1-shot
363
- type: macro-f1
364
- value: 97.40
365
- - name: 3-shot
366
- type: macro-f1
367
- value: 98.13
368
- - name: 5-shot
369
- type: macro-f1
370
- value: 97.83
371
- - task:
372
- type: text-generation
373
- dataset:
374
- name: LaRoSeDa_multiclass
375
- type: LaRoSeDa_multiclass
376
- metrics:
377
- - name: 0-shot
378
- type: macro-f1
379
- value: 66.79
380
- - name: 1-shot
381
- type: macro-f1
382
- value: 67.00
383
- - name: 3-shot
384
- type: macro-f1
385
- value: 67.63
386
- - name: 5-shot
387
- type: macro-f1
388
- value: 69.88
389
- - task:
390
- type: text-generation
391
- dataset:
392
- name: WMT_EN-RO
393
- type: WMT_EN-RO
394
- metrics:
395
- - name: 0-shot
396
- type: bleu
397
- value: 23.84
398
- - name: 1-shot
399
- type: bleu
400
- value: 29.49
401
- - name: 3-shot
402
- type: bleu
403
- value: 30.29
404
- - name: 5-shot
405
- type: bleu
406
- value: 29.49
407
- - task:
408
- type: text-generation
409
- dataset:
410
- name: WMT_RO-EN
411
- type: WMT_RO-EN
412
- metrics:
413
- - name: 0-shot
414
- type: bleu
415
- value: 3.14
416
- - name: 1-shot
417
- type: bleu
418
- value: 3.18
419
- - name: 3-shot
420
- type: bleu
421
- value: 6.72
422
- - name: 5-shot
423
- type: bleu
424
- value: 11.35
425
- - task:
426
- type: text-generation
427
- dataset:
428
- name: XQuAD_EM
429
- type: XQuAD_EM
430
- metrics:
431
- - name: 0-shot
432
- type: exact_match
433
- value: 35.21
434
- - name: 1-shot
435
- type: exact_match
436
- value: 40.76
437
- - name: 3-shot
438
- type: exact_match
439
- value: 43.70
440
- - name: 5-shot
441
- type: exact_match
442
- value: 44.71
443
- - task:
444
- type: text-generation
445
- dataset:
446
- name: XQuAD_F1
447
- type: XQuAD_F1
448
- metrics:
449
- - name: 0-shot
450
- type: f1
451
- value: 57.74
452
- - name: 1-shot
453
- type: f1
454
- value: 61.96
455
- - name: 3-shot
456
- type: f1
457
- value: 65.55
458
- - name: 5-shot
459
- type: f1
460
- value: 67.59
461
- - task:
462
- type: text-generation
463
- dataset:
464
- name: STS_Spearman
465
- type: STS_Spearman
466
- metrics:
467
- - name: 1-shot
468
- type: spearman
469
- value: 77.38
470
- - name: 3-shot
471
- type: spearman
472
- value: 79.28
473
- - name: 5-shot
474
- type: spearman
475
- value: 78.75
476
- - task:
477
- type: text-generation
478
- dataset:
479
- name: STS_Pearson
480
- type: STS_Pearson
481
- metrics:
482
- - name: 1-shot
483
- type: pearson
484
- value: 77.10
485
- - name: 3-shot
486
- type: pearson
487
- value: 77.70
488
- - name: 5-shot
489
- type: pearson
490
- value: 76.91
491
-
492
-
493
- ---
494
-
495
- # Model Card for Model ID
496
-
497
-
498
- This model points/is identical to [RoMistral-7b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09).
499
-
500
-
501
- <!-- Provide a quick summary of what the model is/does. -->
502
-
503
- RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
504
-
505
- ## Model Details
506
-
507
- ### Model Description
508
-
509
-
510
-
511
- <!-- Provide a longer summary of what this model is. -->
512
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
513
-
514
-
515
- - **Developed by:** OpenLLM-Ro
516
- <!-- - **Funded by [optional]:** [More Information Needed] -->
517
- <!-- - **Shared by [optional]:** [More Information Needed] -->
518
- <!-- - **Model type:** [More Information Needed] -->
519
- - **Language(s):** Romanian
520
- - **License:** cc-by-nc-4.0
521
- - **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
522
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat)
523
-
524
-
525
- <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
526
-
527
- ### Model Sources
528
-
529
- <!-- Provide the basic links for the model. -->
530
-
531
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
532
- - **Paper:** https://arxiv.org/abs/2406.18266
533
-
534
- ## Intended Use
535
-
536
- ### Intended Use Cases
537
-
538
- RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
539
-
540
- ### Out-of-Scope Use
541
-
542
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
543
-
544
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
545
-
546
-
547
-
548
- ## How to Get Started with the Model
549
-
550
- Use the code below to get started with the model.
551
-
552
- ```python
553
- from transformers import AutoTokenizer, AutoModelForCausalLM
554
-
555
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct")
556
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct")
557
-
558
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
559
- chat = [
560
- {"role": "user", "content": instruction},
561
- ]
562
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
563
-
564
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
565
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
566
- print(tokenizer.decode(outputs[0]))
567
- ```
568
-
569
- ## Academic Benchmarks
570
-
571
-
572
- <table>
573
- <tbody>
574
- <tr>
575
- <td><strong>Model</strong></td>
576
- <td><strong><center>Average</center></strong></td>
577
- <td><strong><center>ARC</center></strong></td>
578
- <td><strong><center>MMLU</center></strong></td>
579
- <td><strong><center>Winogrande</center></strong></td>
580
- <td><strong><center>Hellaswag</center></strong></td>
581
- <td><strong><center>GSM8k</center></strong></td>
582
- <td><strong><center>TruthfulQA</center></strong></td>
583
- </tr>
584
- <tr>
585
- <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.00</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
586
- </tr>
587
- <tr>
588
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>52.54</center></td><td><center>50.41</center></td><td><center><strong>51.61</strong></center></td><td><center>66.48</center></td><td><center>60.27</center></td><td><center><strong>34.19</strong></center></td><td><center>52.30</center></td>
589
- </tr>
590
- <tr>
591
- <td><em>RoMistral-7b-Instruct-2024-10-09</em></td><td><center><em><strong>52.91</strong></em></center></td><td><center><em><strong>52.27</strong></em></center></td><td><center><em>49.33</em></center></td><td><center><em><strong>70.03</strong></em></center></td><td><center><em><strong>62.88</strong></em></center></td><td><center><em>32.42</em></center></td><td><center><em>50.51</em></center></td>
592
- </tr>
593
- <tr>
594
- <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>51.95</center></td><td><center>50.73</center></td><td><center>47.88</center></td><td><center>68.41</center></td><td><center>62.27</center></td><td><center>32.27</center></td><td><center>50.12</center></td>
595
- </tr>
596
- </tbody>
597
- </table>
598
-
599
-
600
- ## Downstream tasks
601
-
602
- <table>
603
- <tbody>
604
- <tr>
605
- <td></td>
606
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
607
- <td colspan="4"><center><strong>WMT</strong></center></td>
608
- </tr>
609
- <tr>
610
- <td></td>
611
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
612
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
613
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
614
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
615
- </tr>
616
- <tr>
617
- <td><strong>Model</strong></td>
618
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
619
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
620
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
621
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
622
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
623
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
624
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
625
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
626
- </tr>
627
- <tr>
628
- <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center>98.83</center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
629
- </tr>
630
- <tr>
631
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>97.36</strong></center></td><td><center>67.55</center></td><td><center>98.80</center></td><td><center><strong>88.28</strong></center></td><td><center>27.93</center></td><td><center>13.21</center></td><td><center><strong>28.72</strong></center></td><td><center><strong>40.86</strong></center></td>
632
- </tr>
633
- <tr>
634
- <td><em>RoMistral-7b-Instruct-2024-10-09</em></td><td><center><em>95.56</em></center></td><td><center><em><strong>67.83</strong></em></center></td><td><center><em><strong>99.00</strong></em></center></td><td><center><em>87.57</em></center></td><td><center><em><strong>28.28</strong></em></center></td><td><center><em>6.10</em></center></td><td><center><em>27.70</em></center></td><td><center><em>40.36</em></center></td>
635
- </tr>
636
- <tr>
637
- <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>82.13</center></td><td><center>65.24</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.25</center></td><td><center>6.09</center></td><td><center>-</center></td><td><center>-</center></td>
638
- </tr>
639
- </tbody>
640
- </table>
641
-
642
-
643
- <table>
644
- <tbody>
645
- <tr>
646
- <td></td>
647
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
648
- <td colspan="4"><center><strong>STS</strong></center></td>
649
- </tr>
650
- <tr>
651
- <td></td>
652
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
653
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
654
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
655
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
656
- </tr>
657
- <tr>
658
- <td><strong>Model</strong></td>
659
- <td><center><strong>(EM)</strong></center></td>
660
- <td><center><strong>(F1)</strong></center></td>
661
- <td><center><strong>(EM)</strong></center></td>
662
- <td><center><strong>(F1)</strong></center></td>
663
- <td><center><strong>(Spearman)</strong></center></td>
664
- <td><center><strong>(Pearson)</strong></center></td>
665
- <td><center><strong>(Spearman)</strong></center></td>
666
- <td><center><strong>(Pearson)</strong></center></td>
667
- </tr>
668
- <tr>
669
- <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
670
- </tr>
671
- <tr>
672
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center><strong>43.66</strong></center></td><td><center><strong>63.70</strong></center></td><td><center>55.04</center></td><td><center>72.31</center></td><td><center>77.43</center></td><td><center><strong>78.43</strong></center></td><td><center>87.25</center></td><td><center>87.79</center></td>
673
- </tr>
674
- <tr>
675
- <td><em>RoMistral-7b-Instruct-2024-10-09</em></td><td><center><em>41.09</em></center></td><td><center><em>63.21</em></center></td><td><center><em>47.56</em></center></td><td><center><em>62.69</em></center></td><td><center><em><strong>78.47</strong></em></center></td><td><center><em>77.24</em></center></td><td><center><em><strong>87.28</strong></em></center></td><td><center><em><strong>87.88</strong></em></center></td>
676
- </tr>
677
- <tr>
678
- <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>23.40</center></td><td><center>45.80</center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.33</center></td><td><center>76.60</center></td><td><center>-</center></td><td><center>-</center></td>
679
- </tr>
680
- </tbody>
681
- </table>
682
-
683
-
684
- ## MT-Bench
685
-
686
- <table>
687
- <tbody>
688
- <tr>
689
- <td><strong>Model</strong></td>
690
- <td><strong><center>Average</center></strong></td>
691
- <td><strong><center>1st turn</center></strong></td>
692
- <td><strong><center>2nd turn</center></strong></td>
693
- <td><strong><center>Answers in Ro</center></strong></td>
694
- </tr>
695
- <tr>
696
- <td>Mistral-7B-Instruct-v0.2</td><td><center>5.03</center></td><td><center>5.05</center></td><td><center>5.00</center></td><td><center>154/160</center></td>
697
- </tr>
698
- <tr>
699
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>4.99</center></td><td><center>5.46</center></td><td><center>4.53</center></td><td><center><strong>160/160</strong></center></td>
700
- </tr>
701
- <tr>
702
- <td><em>RoMistral-7b-Instruct-2024-10-09</em></td><td><center><em>5.29</em></center></td><td><center><em>5.86</em></center></td><td><center><em>4.72</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
703
- </tr>
704
- <tr>
705
- <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center><strong>5.88</strong></center></td><td><center><strong>6.44</strong></center></td><td><center><strong>5.33</strong></center></td><td><center><strong>160/160</strong></center></td>
706
- </tr>
707
- </tbody>
708
- </table>
709
-
710
-
711
- ## RoCulturaBench
712
-
713
- <table>
714
- <tbody>
715
- <tr>
716
- <td><strong>Model</strong></td>
717
- <td><strong><center>Average</center></strong></td>
718
- <td><strong><center>Answers in Ro</center></strong></td>
719
- </tr>
720
- <tr>
721
- <td>Mistral-7B-Instruct-v0.2</td><td><center>3.68</center></td><td><center>97/100</center></td>
722
- </tr>
723
- <tr>
724
- <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
725
- </tr>
726
- <tr>
727
- <td><em>RoMistral-7b-Instruct-2024-10-09</em></td><td><center><em>3.99</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
728
- </tr>
729
- <tr>
730
- <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center><strong>4.72</strong></center></td><td><center><strong>100/100</strong></center></td>
731
- </tr>
732
- </tbody>
733
- </table>
734
-
735
-
736
-
737
- ## RoMistral Model Family
738
-
739
- | Model | Link |
740
- |--------------------|:--------:|
741
- |RoMistral-7b-Instruct-2024-05-17| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17) |
742
- |*RoMistral-7b-Instruct-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09) |
743
- |RoMistral-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09) |
744
-
745
-
746
- ## Citation
747
-
748
- ```
749
- @misc{masala2024vorbecstiromanecsterecipetrain,
750
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
751
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
752
- year={2024},
753
- eprint={2406.18266},
754
- archivePrefix={arXiv},
755
- primaryClass={cs.CL},
756
- url={https://arxiv.org/abs/2406.18266},
757
- }
758
- ```
759
- <!-- **APA:**
760
-
761
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - mistralai/Mistral-7B-v0.3
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.24
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.36
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 54.40
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 52.86
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 52.33
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 68.57
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 63.50
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 38.15
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 51.01
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 97.67
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 61.79
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 28.69
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 19.23
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 49.05
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 69.11
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 78.67
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 77.08
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 6.78
184
+ - name: Second turn
185
+ type: Score
186
+ value: 5.70
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 50.04
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 50.99
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 53.30
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 53.73
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 54.07
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 55.01
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 51.04
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 52.53
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 53.22
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 52.52
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 66.38
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 68.90
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 68.82
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 70.17
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 62.61
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 63.19
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 63.46
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 63.92
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 64.34
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 27.98
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 40.46
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 46.02
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 97.87
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 96.73
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 98.20
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 97.87
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 45.15
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 65.77
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 66.57
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 69.66
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 28.92
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 28.42
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 28.85
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 28.58
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 3.56
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 9.60
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 29.53
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 34.25
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 45.21
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 49.83
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 50.34
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 50.84
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 66.40
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 68.92
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 70.68
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 70.44
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 79.08
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 78.65
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 78.29
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 77.79
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 76.89
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 76.57
421
+
422
+ ---
423
+
424
+ # Model Card for Model ID
425
+
426
+ <!-- Provide a quick summary of what the model is/does. -->
427
+
428
+ RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page.
429
+
430
+ ## Model Details
431
+
432
+ ### Model Description
433
+
434
+ <!-- Provide a longer summary of what this model is. -->
435
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
436
+
437
+
438
+ - **Developed by:** OpenLLM-Ro
439
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
440
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
441
+ <!-- - **Model type:** [More Information Needed] -->
442
+ - **Language(s):** Romanian
443
+ - **License:** cc-by-nc-4.0
444
+ - **Finetuned from model:** [Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3)
445
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
446
+
447
+
448
+ <!-- - **Finetuned from model [optional]:** [More Information Needed] -->
449
+
450
+ ### Model Sources
451
+
452
+ <!-- Provide the basic links for the model. -->
453
+
454
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
455
+ - **Paper:** https://arxiv.org/abs/2406.18266
456
+
457
+ ## Intended Use
458
+
459
+ ### Intended Use Cases
460
+
461
+ RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
462
+
463
+ ### Out-of-Scope Use
464
+
465
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
466
+
467
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
468
+
469
+
470
+
471
+ ## How to Get Started with the Model
472
+
473
+ Use the code below to get started with the model.
474
+
475
+ ```python
476
+ from transformers import AutoTokenizer, AutoModelForCausalLM
477
+
478
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23")
479
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23")
480
+
481
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
482
+ chat = [
483
+ {"role": "user", "content": instruction},
484
+ ]
485
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
486
+
487
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
488
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
489
+ print(tokenizer.decode(outputs[0]))
490
+ ```
491
+
492
+ ## Academic Benchmarks
493
+
494
+
495
+ <table>
496
+ <tbody>
497
+ <tr>
498
+ <td><strong>Model</strong></td>
499
+ <td><strong><center>Average</center></strong></td>
500
+ <td><strong><center>ARC</center></strong></td>
501
+ <td><strong><center>MMLU</center></strong></td>
502
+ <td><strong><center>Winogrande</center></strong></td>
503
+ <td><strong><center>Hellaswag</center></strong></td>
504
+ <td><strong><center>GSM8k</center></strong></td>
505
+ <td><strong><center>TruthfulQA</center></strong></td>
506
+ </tr>
507
+ <tr>
508
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>47.40</center></td><td><center>46.29</center></td><td><center>47.00</center></td><td><center>58.78</center></td><td><center>54.27</center></td><td><center>13.47</center></td><td><center><strong>64.59</strong></center></td>
509
+ </tr>
510
+ <tr>
511
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>52.54</center></td><td><center>50.41</center></td><td><center>51.61</center></td><td><center>66.48</center></td><td><center>60.27</center></td><td><center>34.19</center></td><td><center>52.30</center></td>
512
+ </tr>
513
+ <tr>
514
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>52.91</center></td><td><center>52.27</center></td><td><center>49.33</center></td><td><center><strong>70.03</strong></center></td><td><center>62.88</center></td><td><center>32.42</center></td><td><center>50.51</center></td>
515
+ </tr>
516
+ <tr>
517
+ <td><em>RoMistral-7b-Instruct-2025-04-23</em></td><td><center><em>54.40</em></center></td><td><center><em>52.86</em></center></td><td><center><em>52.33</em></center></td><td><center><em>68.57</em></center></td><td><center><em>63.50</em></center></td><td><center><em>38.15</em></center></td><td><center><em>51.01</em></center></td>
518
+ </tr>
519
+ <tr>
520
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>51.95</center></td><td><center>50.73</center></td><td><center>47.88</center></td><td><center>68.41</center></td><td><center>62.27</center></td><td><center>32.27</center></td><td><center>50.12</center></td>
521
+ </tr>
522
+ <tr>
523
+ <td>RoMistral-7b-Instruct-DPO-2025-04-23</td><td><center><strong>56.62</strong></center></td><td><center><strong>55.51</strong></center></td><td><center><strong>52.61</strong></center></td><td><center>68.04</center></td><td><center><strong>64.97</strong></center></td><td><center><strong>41.07</strong></center></td><td><center>57.55</center></td>
524
+ </tr>
525
+ </tbody>
526
+ </table>
527
+
528
+
529
+ ## Downstream tasks
530
+
531
+ <table>
532
+ <tbody>
533
+ <tr>
534
+ <td></td>
535
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
536
+ <td colspan="4"><center><strong>WMT</strong></center></td>
537
+ </tr>
538
+ <tr>
539
+ <td></td>
540
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
541
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
542
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
543
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
544
+ </tr>
545
+ <tr>
546
+ <td><strong>Model</strong></td>
547
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
548
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
549
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
550
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
551
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
552
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
553
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
554
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
555
+ </tr>
556
+ <tr>
557
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>96.97</center></td><td><center>56.66</center></td><td><center>98.83</center></td><td><center>87.32</center></td><td><center>18.60</center></td><td><center><strong>33.99</strong></center></td><td><center>26.19</center></td><td><center>39.88</center></td>
558
+ </tr>
559
+ <tr>
560
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>97.36</center></td><td><center>67.55</center></td><td><center>98.80</center></td><td><center><strong>88.28</strong></center></td><td><center>27.93</center></td><td><center>13.21</center></td><td><center><strong>28.72</strong></center></td><td><center><strong>40.86</strong></center></td>
561
+ </tr>
562
+ <tr>
563
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>95.56</center></td><td><center><strong>67.83</strong></center></td><td><center><strong>99.00</strong></center></td><td><center>87.57</center></td><td><center>28.28</center></td><td><center>6.10</center></td><td><center>27.70</center></td><td><center>40.36</center></td>
564
+ </tr>
565
+ <tr>
566
+ <td><em>RoMistral-7b-Instruct-2025-04-23</em></td><td><center><em>97.67</em></center></td><td><center><em>61.79</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>28.69</strong></em></center></td><td><center><em>19.23</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
567
+ </tr>
568
+ <tr>
569
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>82.13</center></td><td><center>65.24</center></td><td><center>-</center></td><td><center>-</center></td><td><center>26.25</center></td><td><center>6.09</center></td><td><center>-</center></td><td><center>-</center></td>
570
+ </tr>
571
+ <tr>
572
+ <td>RoMistral-7b-Instruct-DPO-2025-04-23</td><td><center><strong>97.94</strong></center></td><td><center>66.13</center></td><td><center>-</center></td><td><center>-</center></td><td><center>27.24</center></td><td><center>18.41</center></td><td><center>-</center></td><td><center>-</center></td>
573
+ </tr>
574
+ </tbody>
575
+ </table>
576
+
577
+
578
+ <table>
579
+ <tbody>
580
+ <tr>
581
+ <td></td>
582
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
583
+ <td colspan="4"><center><strong>STS</strong></center></td>
584
+ </tr>
585
+ <tr>
586
+ <td></td>
587
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
588
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
589
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
590
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
591
+ </tr>
592
+ <tr>
593
+ <td><strong>Model</strong></td>
594
+ <td><center><strong>(EM)</strong></center></td>
595
+ <td><center><strong>(F1)</strong></center></td>
596
+ <td><center><strong>(EM)</strong></center></td>
597
+ <td><center><strong>(F1)</strong></center></td>
598
+ <td><center><strong>(Spearman)</strong></center></td>
599
+ <td><center><strong>(Pearson)</strong></center></td>
600
+ <td><center><strong>(Spearman)</strong></center></td>
601
+ <td><center><strong>(Pearson)</strong></center></td>
602
+ </tr>
603
+ <tr>
604
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>27.92</center></td><td><center>50.71</center></td><td><center><strong>65.46</strong></center></td><td><center><strong>79.73</strong></center></td><td><center>62.62</center></td><td><center>60.86</center></td><td><center>84.92</center></td><td><center>85.44</center></td>
605
+ </tr>
606
+ <tr>
607
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>43.66</center></td><td><center>63.70</center></td><td><center>55.04</center></td><td><center>72.31</center></td><td><center>77.43</center></td><td><center><strong>78.43</strong></center></td><td><center>87.25</center></td><td><center>87.79</center></td>
608
+ </tr>
609
+ <tr>
610
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>41.09</center></td><td><center>63.21</center></td><td><center>47.56</center></td><td><center>62.69</center></td><td><center>78.47</center></td><td><center>77.24</center></td><td><center><strong>87.28</strong></center></td><td><center><strong>87.88</strong></center></td>
611
+ </tr>
612
+ <tr>
613
+ <td><em>RoMistral-7b-Instruct-2025-04-23</em></td><td><center><em><strong>49.05</strong></em></center></td><td><center><em><strong>69.11</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>78.67</strong></em></center></td><td><center><em>77.08</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
614
+ </tr>
615
+ <tr>
616
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>23.40</center></td><td><center>45.80</center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.33</center></td><td><center>76.60</center></td><td><center>-</center></td><td><center>-</center></td>
617
+ </tr>
618
+ <tr>
619
+ <td>RoMistral-7b-Instruct-DPO-2025-04-23</td><td><center>40.86</center></td><td><center>62.24</center></td><td><center>-</center></td><td><center>-</center></td><td><center>77.89</center></td><td><center>76.40</center></td><td><center>-</center></td><td><center>-</center></td>
620
+ </tr>
621
+ </tbody>
622
+ </table>
623
+
624
+
625
+ ## MT-Bench
626
+
627
+ <table>
628
+ <tbody>
629
+ <tr>
630
+ <td><strong>Model</strong></td>
631
+ <td><strong><center>Average</center></strong></td>
632
+ <td><strong><center>1st turn</center></strong></td>
633
+ <td><strong><center>2nd turn</center></strong></td>
634
+ <td><strong><center>Answers in Ro</center></strong></td>
635
+ </tr>
636
+ <tr>
637
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>5.03</center></td><td><center>5.05</center></td><td><center>5.00</center></td><td><center>154/160</center></td>
638
+ </tr>
639
+ <tr>
640
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>4.99</center></td><td><center>5.46</center></td><td><center>4.53</center></td><td><center><strong>160/160</strong></center></td>
641
+ </tr>
642
+ <tr>
643
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>5.29</center></td><td><center>5.86</center></td><td><center>4.72</center></td><td><center><strong>160/160</strong></center></td>
644
+ </tr>
645
+ <tr>
646
+ <td><em>RoMistral-7b-Instruct-2025-04-23</em></td><td><center><em>6.24</em></center></td><td><center><em>6.78</em></center></td><td><center><em>5.70</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
647
+ </tr>
648
+ <tr>
649
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>5.88</center></td><td><center>6.44</center></td><td><center>5.33</center></td><td><center><strong>160/160</strong></center></td>
650
+ </tr>
651
+ <tr>
652
+ <td>RoMistral-7b-Instruct-DPO-2025-04-23</td><td><center><strong>6.61</strong></center></td><td><center><strong>6.86</strong></center></td><td><center><strong>6.35</strong></center></td><td><center><strong>160/160</strong></center></td>
653
+ </tr>
654
+ </tbody>
655
+ </table>
656
+
657
+
658
+ ## RoCulturaBench
659
+
660
+ <table>
661
+ <tbody>
662
+ <tr>
663
+ <td><strong>Model</strong></td>
664
+ <td><strong><center>Average</center></strong></td>
665
+ <td><strong><center>Answers in Ro</center></strong></td>
666
+ </tr>
667
+ <tr>
668
+ <td>Mistral-7B-Instruct-v0.2</td><td><center>3.68</center></td><td><center>97/100</center></td>
669
+ </tr>
670
+ <tr>
671
+ <td>RoMistral-7b-Instruct-2024-05-17</td><td><center>3.38</center></td><td><center><strong>100/100</strong></center></td>
672
+ </tr>
673
+ <tr>
674
+ <td>RoMistral-7b-Instruct-2024-10-09</td><td><center>3.99</center></td><td><center><strong>100/100</strong></center></td>
675
+ </tr>
676
+ <tr>
677
+ <td><em>RoMistral-7b-Instruct-2025-04-23</em></td><td><center><em>4.36</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
678
+ </tr>
679
+ <tr>
680
+ <td>RoMistral-7b-Instruct-DPO-2024-10-09</td><td><center>4.72</center></td><td><center><strong>100/100</strong></center></td>
681
+ </tr>
682
+ <tr>
683
+ <td>RoMistral-7b-Instruct-DPO-2025-04-23</td><td><center><strong>4.93</strong></center></td><td><center><strong>100/100</strong></center></td>
684
+ </tr>
685
+ </tbody>
686
+ </table>
687
+
688
+
689
+
690
+
691
+ ## RoMistral Model Family
692
+
693
+ | Model | Link |
694
+ |--------------------|:--------:|
695
+ |RoMistral-7b-Instruct-2024-05-17| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17) |
696
+ |RoMistral-7b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2024-10-09) |
697
+ |*RoMistral-7b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-2025-04-23) |
698
+ |RoMistral-7b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2024-10-09) |
699
+ |RoMistral-7b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoMistral-7b-Instruct-DPO-2025-04-23) |
700
+
701
+
702
+
703
+ ## Citation
704
+
705
+ ```
706
+ @misc{masala2024vorbecstiromanecsterecipetrain,
707
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
708
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
709
+ year={2024},
710
+ eprint={2406.18266},
711
+ archivePrefix={arXiv},
712
+ primaryClass={cs.CL},
713
+ url={https://arxiv.org/abs/2406.18266},
714
+ }
715
+ ```
716
+ <!-- **APA:**
717
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718
  [More Information Needed] -->