--- license: cc-by-nc-4.0 language: - ro base_model: - OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23 datasets: - OpenLLM-Ro/ro_dpo_helpsteer - OpenLLM-Ro/ro_dpo_ultrafeedback - OpenLLM-Ro/ro_dpo_magpie - OpenLLM-Ro/ro_dpo_argilla_magpie - OpenLLM-Ro/ro_dpo_helpsteer2 model-index: - name: OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 7.00 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 4.73 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 53.76 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 51.09 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 56.22 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 66.77 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 59.38 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 31.54 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 57.56 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 96.87 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 60.75 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 20.30 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 18.57 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 9.22 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 22.75 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 30.82 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 20.25 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 7.30 - name: Second turn type: Score value: 6.70 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 51.59 - name: 1-shot type: accuracy value: 52.10 - name: 3-shot type: accuracy value: 50.99 - name: 5-shot type: accuracy value: 50.81 - name: 10-shot type: accuracy value: 49.70 - name: 25-shot type: accuracy value: 51.33 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 56.88 - name: 1-shot type: accuracy value: 55.61 - name: 3-shot type: accuracy value: 56.06 - name: 5-shot type: accuracy value: 56.31 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 65.67 - name: 1-shot type: accuracy value: 66.30 - name: 3-shot type: accuracy value: 67.40 - name: 5-shot type: accuracy value: 67.72 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 60.53 - name: 1-shot type: accuracy value: 60.37 - name: 3-shot type: accuracy value: 58.20 - name: 5-shot type: accuracy value: 58.18 - name: 10-shot type: accuracy value: 59.61 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 25.09 - name: 3-shot type: accuracy value: 30.02 - name: 5-shot type: accuracy value: 39.50 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 95.39 - name: 1-shot type: macro-f1 value: 95.90 - name: 3-shot type: macro-f1 value: 98.00 - name: 5-shot type: macro-f1 value: 98.17 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 60.30 - name: 1-shot type: macro-f1 value: 64.73 - name: 3-shot type: macro-f1 value: 58.69 - name: 5-shot type: macro-f1 value: 59.30 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 5.46 - name: 1-shot type: bleu value: 26.08 - name: 3-shot type: bleu value: 25.90 - name: 5-shot type: bleu value: 23.76 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 2.74 - name: 1-shot type: bleu value: 20.95 - name: 3-shot type: bleu value: 31.53 - name: 5-shot type: bleu value: 19.05 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 12.27 - name: 1-shot type: exact_match value: 17.98 - name: 3-shot type: exact_match value: 5.04 - name: 5-shot type: exact_match value: 1.60 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 26.24 - name: 1-shot type: f1 value: 32.54 - name: 3-shot type: f1 value: 18.00 - name: 5-shot type: f1 value: 14.22 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 76.70 - name: 3-shot type: spearman value: 2.82 - name: 5-shot type: spearman value: 12.95 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 77.30 - name: 3-shot type: pearson value: -14.56 - name: 5-shot type: pearson value: -1.99 --- # Model Card for Model ID *Built with Meta Llama 3.1* This model points/is identical to [RoLlama3.1-8b-Instruct-DPO-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23). RoLlama3.1 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 8B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [RoLlama3.1-8b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoLlama3.1 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "system", "content": "Ești un asistent folositor, respectuos și onest. Încearcă să ajuți cât mai mult prin informațiile oferite, excluzând răspunsuri toxice, rasiste, sexiste, periculoase și ilegale."}, {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model
Average
ARC
MMLU
Winogrande
Hellaswag
GSM8k
TruthfulQA
Llama-3.1-8B-Instruct
49.87
42.86
53.73
59.71
56.82
35.56
50.54
RoLlama3.1-8b-Instruct-2024-10-09
53.03
47.69
54.57
65.84
59.94
44.30
45.82
RoLlama3.1-8b-Instruct-2025-04-23
53.36
48.97
55.17
66.52
60.73
42.03
46.71
RoLlama3.1-8b-Instruct-DPO-2024-10-09
52.74
44.84
55.06
65.87
58.67
44.17
47.82
RoLlama3.1-8b-Instruct-DPO-2025-04-23
53.76
51.09
56.22
66.77
59.38
31.54
57.56
## Downstream tasks
LaRoSeDa
WMT
Few-shot
Finetuned
Few-shot
Finetuned
Model
Binary
(Macro F1)
Multiclass
(Macro F1)
Binary
(Macro F1)
Multiclass
(Macro F1)
EN-RO
(Bleu)
RO-EN
(Bleu)
EN-RO
(Bleu)
RO-EN
(Bleu)
Llama-3.1-8B-Instruct
95.74
59.49
98.57
82.41
19.01
27.77
29.02
39.80
RoLlama3.1-8b-Instruct-2024-10-09
94.56
60.10
95.12
87.53
21.88
23.99
28.27
40.44
RoLlama3.1-8b-Instruct-2025-04-23
95.32
60.84
-
-
23.18
25.11
-
-
RoLlama3.1-8b-Instruct-DPO-2024-10-09
96.10
55.37
-
-
21.29
21.86
-
-
RoLlama3.1-8b-Instruct-DPO-2025-04-23
96.87
60.75
-
-
20.30
18.57
-
-
XQuAD
STS
Few-shot
Finetuned
Few-shot
Finetuned
Model
(EM)
(F1)
(EM)
(F1)
(Spearman)
(Pearson)
(Spearman)
(Pearson)
Llama-3.1-8B-Instruct
44.96
64.45
69.50
84.31
72.11
71.64
84.59
84.96
RoLlama3.1-8b-Instruct-2024-10-09
13.59
23.56
49.41
62.93
75.89
76.00
86.86
87.05
RoLlama3.1-8b-Instruct-2025-04-23
10.74
19.75
-
-
73.53
74.93
-
-
RoLlama3.1-8b-Instruct-DPO-2024-10-09
21.58
36.54
-
-
78.01
77.98
-
-
RoLlama3.1-8b-Instruct-DPO-2025-04-23
9.22
22.75
-
-
30.82
20.25
-
-
## MT-Bench
Model
Average
1st turn
2nd turn
Answers in Ro
Llama-3.1-8B-Instruct
5.69
5.85
5.53
160/160
RoLlama3.1-8b-Instruct-2024-10-09
5.42
5.95
4.89
160/160
RoLlama3.1-8b-Instruct-2025-04-23
6.43
6.78
6.09
160/160
RoLlama3.1-8b-Instruct-DPO-2024-10-09
6.21
6.74
5.69
160/160
RoLlama3.1-8b-Instruct-DPO-2025-04-23
7.00
7.30
6.70
160/160
## RoCulturaBench
Model
Average
Answers in Ro
Llama-3.1-8B-Instruct
3.54
100/100
RoLlama3.1-8b-Instruct-2024-10-09
3.55
100/100
RoLlama3.1-8b-Instruct-2025-04-23
4.28
100/100
RoLlama3.1-8b-Instruct-DPO-2024-10-09
4.42
100/100
RoLlama3.1-8b-Instruct-DPO-2025-04-23
4.73
100/100
## RoLlama3.1 Model Family | Model | Link | |--------------------|:--------:| |RoLlama3.1-8b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2024-10-09) | |RoLlama3.1-8b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-2025-04-23) | |RoLlama3.1-8b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2024-10-09) | |*RoLlama3.1-8b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoLlama3.1-8b-Instruct-DPO-2025-04-23) | ## Citation ``` @misc{masala2024vorbecstiromanecsterecipetrain, title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions}, author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea}, year={2024}, eprint={2406.18266}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2406.18266}, } ```