mihaimasala commited on
Commit
79f76c0
·
verified ·
1 Parent(s): 47fb605

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +698 -697
README.md CHANGED
@@ -1,698 +1,699 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - google/gemma-2-9b-it
7
- datasets:
8
- - OpenLLM-Ro/ro_sft_alpaca
9
- - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
- - OpenLLM-Ro/ro_sft_dolly
11
- - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
- - OpenLLM-Ro/ro_sft_norobots
13
- - OpenLLM-Ro/ro_sft_orca
14
- - OpenLLM-Ro/ro_sft_camel
15
- - OpenLLM-Ro/ro_sft_oasst
16
- - OpenLLM-Ro/ro_sft_ultrachat
17
- - OpenLLM-Ro/ro_sft_magpie_mt
18
- - OpenLLM-Ro/ro_sft_magpie_reasoning
19
- model-index:
20
- - name: OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23
21
- results:
22
- - task:
23
- type: text-generation
24
- dataset:
25
- name: RoMT-Bench
26
- type: RoMT-Bench
27
- metrics:
28
- - name: Score
29
- type: Score
30
- value: 6.78
31
- - task:
32
- type: text-generation
33
- dataset:
34
- name: RoCulturaBench
35
- type: RoCulturaBench
36
- metrics:
37
- - name: Score
38
- type: Score
39
- value: 4.89
40
- - task:
41
- type: text-generation
42
- dataset:
43
- name: Romanian_Academic_Benchmarks
44
- type: Romanian_Academic_Benchmarks
45
- metrics:
46
- - name: Average accuracy
47
- type: accuracy
48
- value: 54.39
49
- - task:
50
- type: text-generation
51
- dataset:
52
- name: OpenLLM-Ro/ro_arc_challenge
53
- type: OpenLLM-Ro/ro_arc_challenge
54
- metrics:
55
- - name: Average accuracy
56
- type: accuracy
57
- value: 50.24
58
- - task:
59
- type: text-generation
60
- dataset:
61
- name: OpenLLM-Ro/ro_mmlu
62
- type: OpenLLM-Ro/ro_mmlu
63
- metrics:
64
- - name: Average accuracy
65
- type: accuracy
66
- value: 62.00
67
- - task:
68
- type: text-generation
69
- dataset:
70
- name: OpenLLM-Ro/ro_winogrande
71
- type: OpenLLM-Ro/ro_winogrande
72
- metrics:
73
- - name: Average accuracy
74
- type: accuracy
75
- value: 70.38
76
- - task:
77
- type: text-generation
78
- dataset:
79
- name: OpenLLM-Ro/ro_hellaswag
80
- type: OpenLLM-Ro/ro_hellaswag
81
- metrics:
82
- - name: Average accuracy
83
- type: accuracy
84
- value: 52.25
85
- - task:
86
- type: text-generation
87
- dataset:
88
- name: OpenLLM-Ro/ro_gsm8k
89
- type: OpenLLM-Ro/ro_gsm8k
90
- metrics:
91
- - name: Average accuracy
92
- type: accuracy
93
- value: 40.51
94
- - task:
95
- type: text-generation
96
- dataset:
97
- name: OpenLLM-Ro/ro_truthfulqa
98
- type: OpenLLM-Ro/ro_truthfulqa
99
- metrics:
100
- - name: Average accuracy
101
- type: accuracy
102
- value: 50.97
103
- - task:
104
- type: text-generation
105
- dataset:
106
- name: LaRoSeDa_binary
107
- type: LaRoSeDa_binary
108
- metrics:
109
- - name: Average macro-f1
110
- type: macro-f1
111
- value: 84.23
112
- - task:
113
- type: text-generation
114
- dataset:
115
- name: LaRoSeDa_multiclass
116
- type: LaRoSeDa_multiclass
117
- metrics:
118
- - name: Average macro-f1
119
- type: macro-f1
120
- value: 60.14
121
- - task:
122
- type: text-generation
123
- dataset:
124
- name: WMT_EN-RO
125
- type: WMT_EN-RO
126
- metrics:
127
- - name: Average bleu
128
- type: bleu
129
- value: 17.78
130
- - task:
131
- type: text-generation
132
- dataset:
133
- name: WMT_RO-EN
134
- type: WMT_RO-EN
135
- metrics:
136
- - name: Average bleu
137
- type: bleu
138
- value: 18.24
139
- - task:
140
- type: text-generation
141
- dataset:
142
- name: XQuAD
143
- type: XQuAD
144
- metrics:
145
- - name: Average exact_match
146
- type: exact_match
147
- value: 49.22
148
- - task:
149
- type: text-generation
150
- dataset:
151
- name: XQuAD
152
- type: XQuAD
153
- metrics:
154
- - name: Average f1
155
- type: f1
156
- value: 66.33
157
- - task:
158
- type: text-generation
159
- dataset:
160
- name: STS
161
- type: STS
162
- metrics:
163
- - name: Average spearman
164
- type: spearman
165
- value: 70.17
166
- - task:
167
- type: text-generation
168
- dataset:
169
- name: STS
170
- type: STS
171
- metrics:
172
- - name: Average pearson
173
- type: pearson
174
- value: 70.80
175
- - task:
176
- type: text-generation
177
- dataset:
178
- name: RoMT-Bench
179
- type: RoMT-Bench
180
- metrics:
181
- - name: First turn
182
- type: Score
183
- value: 7.00
184
- - name: Second turn
185
- type: Score
186
- value: 6.55
187
- - task:
188
- type: text-generation
189
- dataset:
190
- name: OpenLLM-Ro/ro_arc_challenge
191
- type: OpenLLM-Ro/ro_arc_challenge
192
- metrics:
193
- - name: 0-shot
194
- type: accuracy
195
- value: 47.47
196
- - name: 1-shot
197
- type: accuracy
198
- value: 50.56
199
- - name: 3-shot
200
- type: accuracy
201
- value: 50.73
202
- - name: 5-shot
203
- type: accuracy
204
- value: 50.39
205
- - name: 10-shot
206
- type: accuracy
207
- value: 50.99
208
- - name: 25-shot
209
- type: accuracy
210
- value: 51.33
211
- - task:
212
- type: text-generation
213
- dataset:
214
- name: OpenLLM-Ro/ro_mmlu
215
- type: OpenLLM-Ro/ro_mmlu
216
- metrics:
217
- - name: 0-shot
218
- type: accuracy
219
- value: 58.73
220
- - name: 1-shot
221
- type: accuracy
222
- value: 60.12
223
- - name: 3-shot
224
- type: accuracy
225
- value: 64.93
226
- - name: 5-shot
227
- type: accuracy
228
- value: 64.21
229
- - task:
230
- type: text-generation
231
- dataset:
232
- name: OpenLLM-Ro/ro_winogrande
233
- type: OpenLLM-Ro/ro_winogrande
234
- metrics:
235
- - name: 0-shot
236
- type: accuracy
237
- value: 66.06
238
- - name: 1-shot
239
- type: accuracy
240
- value: 70.40
241
- - name: 3-shot
242
- type: accuracy
243
- value: 72.30
244
- - name: 5-shot
245
- type: accuracy
246
- value: 72.77
247
- - task:
248
- type: text-generation
249
- dataset:
250
- name: OpenLLM-Ro/ro_hellaswag
251
- type: OpenLLM-Ro/ro_hellaswag
252
- metrics:
253
- - name: 0-shot
254
- type: accuracy
255
- value: 56.30
256
- - name: 1-shot
257
- type: accuracy
258
- value: 58.29
259
- - name: 3-shot
260
- type: accuracy
261
- value: 50.88
262
- - name: 5-shot
263
- type: accuracy
264
- value: 44.38
265
- - name: 10-shot
266
- type: accuracy
267
- value: 51.41
268
- - task:
269
- type: text-generation
270
- dataset:
271
- name: OpenLLM-Ro/ro_gsm8k
272
- type: OpenLLM-Ro/ro_gsm8k
273
- metrics:
274
- - name: 1-shot
275
- type: accuracy
276
- value: 27.29
277
- - name: 3-shot
278
- type: accuracy
279
- value: 39.04
280
- - name: 5-shot
281
- type: accuracy
282
- value: 55.19
283
- - task:
284
- type: text-generation
285
- dataset:
286
- name: LaRoSeDa_binary
287
- type: LaRoSeDa_binary
288
- metrics:
289
- - name: 0-shot
290
- type: macro-f1
291
- value: 59.19
292
- - name: 1-shot
293
- type: macro-f1
294
- value: 94.22
295
- - name: 3-shot
296
- type: macro-f1
297
- value: 93.24
298
- - name: 5-shot
299
- type: macro-f1
300
- value: 90.27
301
- - task:
302
- type: text-generation
303
- dataset:
304
- name: LaRoSeDa_multiclass
305
- type: LaRoSeDa_multiclass
306
- metrics:
307
- - name: 0-shot
308
- type: macro-f1
309
- value: 32.52
310
- - name: 1-shot
311
- type: macro-f1
312
- value: 68.64
313
- - name: 3-shot
314
- type: macro-f1
315
- value: 70.14
316
- - name: 5-shot
317
- type: macro-f1
318
- value: 69.26
319
- - task:
320
- type: text-generation
321
- dataset:
322
- name: WMT_EN-RO
323
- type: WMT_EN-RO
324
- metrics:
325
- - name: 0-shot
326
- type: bleu
327
- value: 1.96
328
- - name: 1-shot
329
- type: bleu
330
- value: 27.30
331
- - name: 3-shot
332
- type: bleu
333
- value: 28.31
334
- - name: 5-shot
335
- type: bleu
336
- value: 13.56
337
- - task:
338
- type: text-generation
339
- dataset:
340
- name: WMT_RO-EN
341
- type: WMT_RO-EN
342
- metrics:
343
- - name: 0-shot
344
- type: bleu
345
- value: 0.66
346
- - name: 1-shot
347
- type: bleu
348
- value: 26.76
349
- - name: 3-shot
350
- type: bleu
351
- value: 31.88
352
- - name: 5-shot
353
- type: bleu
354
- value: 13.66
355
- - task:
356
- type: text-generation
357
- dataset:
358
- name: XQuAD_EM
359
- type: XQuAD_EM
360
- metrics:
361
- - name: 0-shot
362
- type: exact_match
363
- value: 49.92
364
- - name: 1-shot
365
- type: exact_match
366
- value: 47.98
367
- - name: 3-shot
368
- type: exact_match
369
- value: 45.71
370
- - name: 5-shot
371
- type: exact_match
372
- value: 53.28
373
- - task:
374
- type: text-generation
375
- dataset:
376
- name: XQuAD_F1
377
- type: XQuAD_F1
378
- metrics:
379
- - name: 0-shot
380
- type: f1
381
- value: 67.52
382
- - name: 1-shot
383
- type: f1
384
- value: 63.97
385
- - name: 3-shot
386
- type: f1
387
- value: 62.39
388
- - name: 5-shot
389
- type: f1
390
- value: 71.43
391
- - task:
392
- type: text-generation
393
- dataset:
394
- name: STS_Spearman
395
- type: STS_Spearman
396
- metrics:
397
- - name: 1-shot
398
- type: spearman
399
- value: 82.53
400
- - name: 3-shot
401
- type: spearman
402
- value: 65.73
403
- - name: 5-shot
404
- type: spearman
405
- value: 62.25
406
- - task:
407
- type: text-generation
408
- dataset:
409
- name: STS_Pearson
410
- type: STS_Pearson
411
- metrics:
412
- - name: 1-shot
413
- type: pearson
414
- value: 82.89
415
- - name: 3-shot
416
- type: pearson
417
- value: 66.26
418
- - name: 5-shot
419
- type: pearson
420
- value: 63.25
421
-
422
-
423
- ---
424
-
425
- # Model Card for Model ID
426
-
427
- <!-- Provide a quick summary of what the model is/does. -->
428
-
429
- RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 9B model**. Links to other models can be found at the bottom of this page.
430
-
431
- ## Model Details
432
-
433
- ### Model Description
434
-
435
- <!-- Provide a longer summary of what this model is. -->
436
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
437
-
438
-
439
- - **Developed by:** OpenLLM-Ro
440
- <!-- - **Funded by [optional]:** [More Information Needed] -->
441
- <!-- - **Shared by [optional]:** [More Information Needed] -->
442
- <!-- - **Model type:** [More Information Needed] -->
443
- - **Language(s):** Romanian
444
- - **License:** cc-by-nc-4.0
445
- - **Finetuned from model:** [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
446
- - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
447
-
448
-
449
- ### Model Sources
450
-
451
- <!-- Provide the basic links for the model. -->
452
-
453
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
454
- - **Paper:** https://arxiv.org/abs/2406.18266
455
-
456
- ## Intended Use
457
-
458
- ### Intended Use Cases
459
-
460
- RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
461
-
462
- ### Out-of-Scope Use
463
-
464
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
465
-
466
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
467
-
468
-
469
-
470
- ## How to Get Started with the Model
471
-
472
- Use the code below to get started with the model.
473
-
474
- ```python
475
- from transformers import AutoTokenizer, AutoModelForCausalLM
476
-
477
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23")
478
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-2025-10-23")
479
-
480
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
481
- chat = [
482
- {"role": "user", "content": instruction},
483
- ]
484
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
485
-
486
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
487
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
488
- print(tokenizer.decode(outputs[0]))
489
- ```
490
-
491
- ## Academic Benchmarks
492
-
493
- <table>
494
- <tbody>
495
- <tr>
496
- <td><strong>Model</strong></td>
497
- <td><strong><center>Average</center></strong></td>
498
- <td><strong><center>ARC</center></strong></td>
499
- <td><strong><center>MMLU</center></strong></td>
500
- <td><strong><center>Winogrande</center></strong></td>
501
- <td><strong><center>Hellaswag</center></strong></td>
502
- <td><strong><center>GSM8k</center></strong></td>
503
- <td><strong><center>TruthfulQA</center></strong></td>
504
- </tr>
505
- <tr>
506
- <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center>63.11</center></td><td><center>41.95</center></td><td><center>53.03</center></td>
507
- </tr>
508
- <tr>
509
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center>71.00</center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center>53.77</center></td>
510
- </tr>
511
- <tr>
512
- <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>54.39</em></center></td><td><center><em>50.24</em></center></td><td><center><em>62.00</em></center></td><td><center><em>70.38</em></center></td><td><center><em>52.25</em></center></td><td><center><em>40.51</em></center></td><td><center><em>50.97</em></center></td>
513
- </tr>
514
- <tr>
515
- <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>59.08</center></td><td><center>54.10</center></td><td><center>63.41</center></td><td><center>70.02</center></td><td><center>59.35</center></td><td><center><strong>57.24</strong></center></td><td><center>50.39</center></td>
516
- </tr>
517
- <tr>
518
- <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center><strong>59.79</strong></center></td><td><center>55.66</center></td><td><center>64.00</center></td><td><center><strong>73.16</strong></center></td><td><center><strong>64.26</strong></center></td><td><center>37.80</center></td><td><center><strong>63.86</strong></center></td>
519
- </tr>
520
- </tbody>
521
- </table>
522
-
523
-
524
- ## Downstream tasks
525
-
526
- <table>
527
- <tbody>
528
- <tr>
529
- <td></td>
530
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
531
- <td colspan="4"><center><strong>WMT</strong></center></td>
532
- </tr>
533
- <tr>
534
- <td></td>
535
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
536
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
537
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
538
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
539
- </tr>
540
- <tr>
541
- <td><strong>Model</strong></td>
542
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
543
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
544
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
545
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
546
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
547
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
548
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
549
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
550
- </tr>
551
- <tr>
552
- <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center><strong>98.97</strong></center></td><td><center>86.02</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>27.94</center></td><td><center><strong>41.61</strong></center></td>
553
- </tr>
554
- <tr>
555
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>98.93</center></td><td><center><strong>88.33</strong></center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center><strong>28.43</strong></center></td><td><center>40.94</center></td>
556
- </tr>
557
- <tr>
558
- <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>84.23</em></center></td><td><center><em>60.14</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>17.78</em></center></td><td><center><em>18.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
559
- </tr>
560
- <tr>
561
- <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>97.74</strong></center></td><td><center><strong>67.40</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center>27.32</center></td><td><center>15.96</center></td><td><center>-</center></td><td><center>-</center></td>
562
- </tr>
563
- <tr>
564
- <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>82.84</center></td><td><center>65.95</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>28.16</strong></center></td><td><center>19.34</center></td><td><center>-</center></td><td><center>-</center></td>
565
- </tr>
566
- </tbody>
567
- </table>
568
-
569
-
570
- <table>
571
- <tbody>
572
- <tr>
573
- <td></td>
574
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
575
- <td colspan="4"><center><strong>STS</strong></center></td>
576
- </tr>
577
- <tr>
578
- <td></td>
579
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
580
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
581
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
582
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
583
- </tr>
584
- <tr>
585
- <td><strong>Model</strong></td>
586
- <td><center><strong>(EM)</strong></center></td>
587
- <td><center><strong>(F1)</strong></center></td>
588
- <td><center><strong>(EM)</strong></center></td>
589
- <td><center><strong>(F1)</strong></center></td>
590
- <td><center><strong>(Spearman)</strong></center></td>
591
- <td><center><strong>(Pearson)</strong></center></td>
592
- <td><center><strong>(Spearman)</strong></center></td>
593
- <td><center><strong>(Pearson)</strong></center></td>
594
- </tr>
595
- <tr>
596
- <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center><strong>71.09</strong></center></td><td><center><strong>84.78</strong></center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>89.07</center></td><td><center>89.29</center></td>
597
- </tr>
598
- <tr>
599
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>50.00</center></td><td><center>64.10</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center><strong>89.45</strong></center></td><td><center><strong>89.89</strong></center></td>
600
- </tr>
601
- <tr>
602
- <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>49.22</em></center></td><td><center><em>66.33</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>70.17</em></center></td><td><center><em>70.80</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
603
- </tr>
604
- <tr>
605
- <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>32.42</center></td><td><center>58.68</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>80.82</strong></center></td><td><center><strong>81.50</strong></center></td><td><center>-</center></td><td><center>-</center></td>
606
- </tr>
607
- <tr>
608
- <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>30.82</center></td><td><center>48.53</center></td><td><center>-</center></td><td><center>-</center></td><td><center>73.24</center></td><td><center>73.13</center></td><td><center>-</center></td><td><center>-</center></td>
609
- </tr>
610
- </tbody>
611
- </table>
612
-
613
-
614
- ## MT-Bench
615
-
616
- <table>
617
- <tbody>
618
- <tr>
619
- <td><strong>Model</strong></td>
620
- <td><strong><center>Average</center></strong></td>
621
- <td><strong><center>1st turn</center></strong></td>
622
- <td><strong><center>2nd turn</center></strong></td>
623
- <td><strong><center>Answers in Ro</center></strong></td>
624
- </tr>
625
- <tr>
626
- <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
627
- </tr>
628
- <tr>
629
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
630
- </tr>
631
- <tr>
632
- <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>6.78</em></center></td><td><center><em>7.00</em></center></td><td><center><em>6.55</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
633
- </tr>
634
- <tr>
635
- <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>6.77</center></td><td><center>7.24</center></td><td><center>6.30</center></td><td><center><strong>160/160</strong></center></td>
636
- </tr>
637
- <tr>
638
- <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>7.26</center></td><td><center>7.65</center></td><td><center>6.86</center></td><td><center><strong>160/160</strong></center></td>
639
- </tr>
640
- </tbody>
641
- </table>
642
-
643
-
644
- ## RoCulturaBench
645
-
646
- <table>
647
- <tbody>
648
- <tr>
649
- <td><strong>Model</strong></td>
650
- <td><strong><center>Average</center></strong></td>
651
- <td><strong><center>Answers in Ro</center></strong></td>
652
- </tr>
653
- <tr>
654
- <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
655
- </tr>
656
- <tr>
657
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
658
- </tr>
659
- <tr>
660
- <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>4.89</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
661
- </tr>
662
- <tr>
663
- <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>4.83</center></td><td><center><strong>100/100</strong></center></td>
664
- </tr>
665
- <tr>
666
- <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>5.36</center></td><td><center><strong>100/100</strong></center></td>
667
- </tr>
668
- </tbody>
669
- </table>
670
-
671
-
672
- ## RoGemma2 Model Family
673
-
674
- | Model | Link |
675
- |--------------------|:--------:|
676
- |RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
677
- |*RoGemma2-9b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
678
- |RoGemma2-9b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
679
- |RoGemma2-9b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
680
-
681
-
682
-
683
- ## Citation
684
-
685
- ```
686
- @misc{masala2024vorbecstiromanecsterecipetrain,
687
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
688
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
689
- year={2024},
690
- eprint={2406.18266},
691
- archivePrefix={arXiv},
692
- primaryClass={cs.CL},
693
- url={https://arxiv.org/abs/2406.18266},
694
- }
695
- ```
696
- <!-- **APA:**
697
-
 
698
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - google/gemma-2-9b-it
7
+ datasets:
8
+ - OpenLLM-Ro/ro_sft_alpaca
9
+ - OpenLLM-Ro/ro_sft_alpaca_gpt4
10
+ - OpenLLM-Ro/ro_sft_dolly
11
+ - OpenLLM-Ro/ro_sft_selfinstruct_gpt4
12
+ - OpenLLM-Ro/ro_sft_norobots
13
+ - OpenLLM-Ro/ro_sft_orca
14
+ - OpenLLM-Ro/ro_sft_camel
15
+ - OpenLLM-Ro/ro_sft_oasst
16
+ - OpenLLM-Ro/ro_sft_ultrachat
17
+ - OpenLLM-Ro/ro_sft_magpie_mt
18
+ - OpenLLM-Ro/ro_sft_magpie_reasoning
19
+ model-index:
20
+ - name: OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ name: RoMT-Bench
26
+ type: RoMT-Bench
27
+ metrics:
28
+ - name: Score
29
+ type: Score
30
+ value: 6.78
31
+ - task:
32
+ type: text-generation
33
+ dataset:
34
+ name: RoCulturaBench
35
+ type: RoCulturaBench
36
+ metrics:
37
+ - name: Score
38
+ type: Score
39
+ value: 4.89
40
+ - task:
41
+ type: text-generation
42
+ dataset:
43
+ name: Romanian_Academic_Benchmarks
44
+ type: Romanian_Academic_Benchmarks
45
+ metrics:
46
+ - name: Average accuracy
47
+ type: accuracy
48
+ value: 54.39
49
+ - task:
50
+ type: text-generation
51
+ dataset:
52
+ name: OpenLLM-Ro/ro_arc_challenge
53
+ type: OpenLLM-Ro/ro_arc_challenge
54
+ metrics:
55
+ - name: Average accuracy
56
+ type: accuracy
57
+ value: 50.24
58
+ - task:
59
+ type: text-generation
60
+ dataset:
61
+ name: OpenLLM-Ro/ro_mmlu
62
+ type: OpenLLM-Ro/ro_mmlu
63
+ metrics:
64
+ - name: Average accuracy
65
+ type: accuracy
66
+ value: 62.00
67
+ - task:
68
+ type: text-generation
69
+ dataset:
70
+ name: OpenLLM-Ro/ro_winogrande
71
+ type: OpenLLM-Ro/ro_winogrande
72
+ metrics:
73
+ - name: Average accuracy
74
+ type: accuracy
75
+ value: 70.38
76
+ - task:
77
+ type: text-generation
78
+ dataset:
79
+ name: OpenLLM-Ro/ro_hellaswag
80
+ type: OpenLLM-Ro/ro_hellaswag
81
+ metrics:
82
+ - name: Average accuracy
83
+ type: accuracy
84
+ value: 52.25
85
+ - task:
86
+ type: text-generation
87
+ dataset:
88
+ name: OpenLLM-Ro/ro_gsm8k
89
+ type: OpenLLM-Ro/ro_gsm8k
90
+ metrics:
91
+ - name: Average accuracy
92
+ type: accuracy
93
+ value: 40.51
94
+ - task:
95
+ type: text-generation
96
+ dataset:
97
+ name: OpenLLM-Ro/ro_truthfulqa
98
+ type: OpenLLM-Ro/ro_truthfulqa
99
+ metrics:
100
+ - name: Average accuracy
101
+ type: accuracy
102
+ value: 50.97
103
+ - task:
104
+ type: text-generation
105
+ dataset:
106
+ name: LaRoSeDa_binary
107
+ type: LaRoSeDa_binary
108
+ metrics:
109
+ - name: Average macro-f1
110
+ type: macro-f1
111
+ value: 84.23
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ name: LaRoSeDa_multiclass
116
+ type: LaRoSeDa_multiclass
117
+ metrics:
118
+ - name: Average macro-f1
119
+ type: macro-f1
120
+ value: 60.14
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ name: WMT_EN-RO
125
+ type: WMT_EN-RO
126
+ metrics:
127
+ - name: Average bleu
128
+ type: bleu
129
+ value: 17.78
130
+ - task:
131
+ type: text-generation
132
+ dataset:
133
+ name: WMT_RO-EN
134
+ type: WMT_RO-EN
135
+ metrics:
136
+ - name: Average bleu
137
+ type: bleu
138
+ value: 18.24
139
+ - task:
140
+ type: text-generation
141
+ dataset:
142
+ name: XQuAD
143
+ type: XQuAD
144
+ metrics:
145
+ - name: Average exact_match
146
+ type: exact_match
147
+ value: 49.22
148
+ - task:
149
+ type: text-generation
150
+ dataset:
151
+ name: XQuAD
152
+ type: XQuAD
153
+ metrics:
154
+ - name: Average f1
155
+ type: f1
156
+ value: 66.33
157
+ - task:
158
+ type: text-generation
159
+ dataset:
160
+ name: STS
161
+ type: STS
162
+ metrics:
163
+ - name: Average spearman
164
+ type: spearman
165
+ value: 70.17
166
+ - task:
167
+ type: text-generation
168
+ dataset:
169
+ name: STS
170
+ type: STS
171
+ metrics:
172
+ - name: Average pearson
173
+ type: pearson
174
+ value: 70.80
175
+ - task:
176
+ type: text-generation
177
+ dataset:
178
+ name: RoMT-Bench
179
+ type: RoMT-Bench
180
+ metrics:
181
+ - name: First turn
182
+ type: Score
183
+ value: 7.00
184
+ - name: Second turn
185
+ type: Score
186
+ value: 6.55
187
+ - task:
188
+ type: text-generation
189
+ dataset:
190
+ name: OpenLLM-Ro/ro_arc_challenge
191
+ type: OpenLLM-Ro/ro_arc_challenge
192
+ metrics:
193
+ - name: 0-shot
194
+ type: accuracy
195
+ value: 47.47
196
+ - name: 1-shot
197
+ type: accuracy
198
+ value: 50.56
199
+ - name: 3-shot
200
+ type: accuracy
201
+ value: 50.73
202
+ - name: 5-shot
203
+ type: accuracy
204
+ value: 50.39
205
+ - name: 10-shot
206
+ type: accuracy
207
+ value: 50.99
208
+ - name: 25-shot
209
+ type: accuracy
210
+ value: 51.33
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ name: OpenLLM-Ro/ro_mmlu
215
+ type: OpenLLM-Ro/ro_mmlu
216
+ metrics:
217
+ - name: 0-shot
218
+ type: accuracy
219
+ value: 58.73
220
+ - name: 1-shot
221
+ type: accuracy
222
+ value: 60.12
223
+ - name: 3-shot
224
+ type: accuracy
225
+ value: 64.93
226
+ - name: 5-shot
227
+ type: accuracy
228
+ value: 64.21
229
+ - task:
230
+ type: text-generation
231
+ dataset:
232
+ name: OpenLLM-Ro/ro_winogrande
233
+ type: OpenLLM-Ro/ro_winogrande
234
+ metrics:
235
+ - name: 0-shot
236
+ type: accuracy
237
+ value: 66.06
238
+ - name: 1-shot
239
+ type: accuracy
240
+ value: 70.40
241
+ - name: 3-shot
242
+ type: accuracy
243
+ value: 72.30
244
+ - name: 5-shot
245
+ type: accuracy
246
+ value: 72.77
247
+ - task:
248
+ type: text-generation
249
+ dataset:
250
+ name: OpenLLM-Ro/ro_hellaswag
251
+ type: OpenLLM-Ro/ro_hellaswag
252
+ metrics:
253
+ - name: 0-shot
254
+ type: accuracy
255
+ value: 56.30
256
+ - name: 1-shot
257
+ type: accuracy
258
+ value: 58.29
259
+ - name: 3-shot
260
+ type: accuracy
261
+ value: 50.88
262
+ - name: 5-shot
263
+ type: accuracy
264
+ value: 44.38
265
+ - name: 10-shot
266
+ type: accuracy
267
+ value: 51.41
268
+ - task:
269
+ type: text-generation
270
+ dataset:
271
+ name: OpenLLM-Ro/ro_gsm8k
272
+ type: OpenLLM-Ro/ro_gsm8k
273
+ metrics:
274
+ - name: 1-shot
275
+ type: accuracy
276
+ value: 27.29
277
+ - name: 3-shot
278
+ type: accuracy
279
+ value: 39.04
280
+ - name: 5-shot
281
+ type: accuracy
282
+ value: 55.19
283
+ - task:
284
+ type: text-generation
285
+ dataset:
286
+ name: LaRoSeDa_binary
287
+ type: LaRoSeDa_binary
288
+ metrics:
289
+ - name: 0-shot
290
+ type: macro-f1
291
+ value: 59.19
292
+ - name: 1-shot
293
+ type: macro-f1
294
+ value: 94.22
295
+ - name: 3-shot
296
+ type: macro-f1
297
+ value: 93.24
298
+ - name: 5-shot
299
+ type: macro-f1
300
+ value: 90.27
301
+ - task:
302
+ type: text-generation
303
+ dataset:
304
+ name: LaRoSeDa_multiclass
305
+ type: LaRoSeDa_multiclass
306
+ metrics:
307
+ - name: 0-shot
308
+ type: macro-f1
309
+ value: 32.52
310
+ - name: 1-shot
311
+ type: macro-f1
312
+ value: 68.64
313
+ - name: 3-shot
314
+ type: macro-f1
315
+ value: 70.14
316
+ - name: 5-shot
317
+ type: macro-f1
318
+ value: 69.26
319
+ - task:
320
+ type: text-generation
321
+ dataset:
322
+ name: WMT_EN-RO
323
+ type: WMT_EN-RO
324
+ metrics:
325
+ - name: 0-shot
326
+ type: bleu
327
+ value: 1.96
328
+ - name: 1-shot
329
+ type: bleu
330
+ value: 27.30
331
+ - name: 3-shot
332
+ type: bleu
333
+ value: 28.31
334
+ - name: 5-shot
335
+ type: bleu
336
+ value: 13.56
337
+ - task:
338
+ type: text-generation
339
+ dataset:
340
+ name: WMT_RO-EN
341
+ type: WMT_RO-EN
342
+ metrics:
343
+ - name: 0-shot
344
+ type: bleu
345
+ value: 0.66
346
+ - name: 1-shot
347
+ type: bleu
348
+ value: 26.76
349
+ - name: 3-shot
350
+ type: bleu
351
+ value: 31.88
352
+ - name: 5-shot
353
+ type: bleu
354
+ value: 13.66
355
+ - task:
356
+ type: text-generation
357
+ dataset:
358
+ name: XQuAD_EM
359
+ type: XQuAD_EM
360
+ metrics:
361
+ - name: 0-shot
362
+ type: exact_match
363
+ value: 49.92
364
+ - name: 1-shot
365
+ type: exact_match
366
+ value: 47.98
367
+ - name: 3-shot
368
+ type: exact_match
369
+ value: 45.71
370
+ - name: 5-shot
371
+ type: exact_match
372
+ value: 53.28
373
+ - task:
374
+ type: text-generation
375
+ dataset:
376
+ name: XQuAD_F1
377
+ type: XQuAD_F1
378
+ metrics:
379
+ - name: 0-shot
380
+ type: f1
381
+ value: 67.52
382
+ - name: 1-shot
383
+ type: f1
384
+ value: 63.97
385
+ - name: 3-shot
386
+ type: f1
387
+ value: 62.39
388
+ - name: 5-shot
389
+ type: f1
390
+ value: 71.43
391
+ - task:
392
+ type: text-generation
393
+ dataset:
394
+ name: STS_Spearman
395
+ type: STS_Spearman
396
+ metrics:
397
+ - name: 1-shot
398
+ type: spearman
399
+ value: 82.53
400
+ - name: 3-shot
401
+ type: spearman
402
+ value: 65.73
403
+ - name: 5-shot
404
+ type: spearman
405
+ value: 62.25
406
+ - task:
407
+ type: text-generation
408
+ dataset:
409
+ name: STS_Pearson
410
+ type: STS_Pearson
411
+ metrics:
412
+ - name: 1-shot
413
+ type: pearson
414
+ value: 82.89
415
+ - name: 3-shot
416
+ type: pearson
417
+ value: 66.26
418
+ - name: 5-shot
419
+ type: pearson
420
+ value: 63.25
421
+
422
+
423
+ ---
424
+
425
+ # Model Card for Model ID
426
+
427
+ <!-- Provide a quick summary of what the model is/does. -->
428
+ This model points/is identical to [RoGemma2-9b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23).
429
+
430
+ RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 9B model**. Links to other models can be found at the bottom of this page.
431
+
432
+ ## Model Details
433
+
434
+ ### Model Description
435
+
436
+ <!-- Provide a longer summary of what this model is. -->
437
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
438
+
439
+
440
+ - **Developed by:** OpenLLM-Ro
441
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
442
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
443
+ <!-- - **Model type:** [More Information Needed] -->
444
+ - **Language(s):** Romanian
445
+ - **License:** cc-by-nc-4.0
446
+ - **Finetuned from model:** [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
447
+ - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel), [RoOpenAssistant](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_oasst), [RoUltraChat](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_ultrachat), [RoMagpiePro](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_mt), [RoMagpieReasoning](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_magpie_reasoning)
448
+
449
+
450
+ ### Model Sources
451
+
452
+ <!-- Provide the basic links for the model. -->
453
+
454
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
455
+ - **Paper:** https://arxiv.org/abs/2406.18266
456
+
457
+ ## Intended Use
458
+
459
+ ### Intended Use Cases
460
+
461
+ RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
462
+
463
+ ### Out-of-Scope Use
464
+
465
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
466
+
467
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
468
+
469
+
470
+
471
+ ## How to Get Started with the Model
472
+
473
+ Use the code below to get started with the model.
474
+
475
+ ```python
476
+ from transformers import AutoTokenizer, AutoModelForCausalLM
477
+
478
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct")
479
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct")
480
+
481
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
482
+ chat = [
483
+ {"role": "user", "content": instruction},
484
+ ]
485
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
486
+
487
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
488
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
489
+ print(tokenizer.decode(outputs[0]))
490
+ ```
491
+
492
+ ## Academic Benchmarks
493
+
494
+ <table>
495
+ <tbody>
496
+ <tr>
497
+ <td><strong>Model</strong></td>
498
+ <td><strong><center>Average</center></strong></td>
499
+ <td><strong><center>ARC</center></strong></td>
500
+ <td><strong><center>MMLU</center></strong></td>
501
+ <td><strong><center>Winogrande</center></strong></td>
502
+ <td><strong><center>Hellaswag</center></strong></td>
503
+ <td><strong><center>GSM8k</center></strong></td>
504
+ <td><strong><center>TruthfulQA</center></strong></td>
505
+ </tr>
506
+ <tr>
507
+ <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center>63.11</center></td><td><center>41.95</center></td><td><center>53.03</center></td>
508
+ </tr>
509
+ <tr>
510
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center>71.00</center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center>53.77</center></td>
511
+ </tr>
512
+ <tr>
513
+ <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>54.39</em></center></td><td><center><em>50.24</em></center></td><td><center><em>62.00</em></center></td><td><center><em>70.38</em></center></td><td><center><em>52.25</em></center></td><td><center><em>40.51</em></center></td><td><center><em>50.97</em></center></td>
514
+ </tr>
515
+ <tr>
516
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>59.08</center></td><td><center>54.10</center></td><td><center>63.41</center></td><td><center>70.02</center></td><td><center>59.35</center></td><td><center><strong>57.24</strong></center></td><td><center>50.39</center></td>
517
+ </tr>
518
+ <tr>
519
+ <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center><strong>59.79</strong></center></td><td><center>55.66</center></td><td><center>64.00</center></td><td><center><strong>73.16</strong></center></td><td><center><strong>64.26</strong></center></td><td><center>37.80</center></td><td><center><strong>63.86</strong></center></td>
520
+ </tr>
521
+ </tbody>
522
+ </table>
523
+
524
+
525
+ ## Downstream tasks
526
+
527
+ <table>
528
+ <tbody>
529
+ <tr>
530
+ <td></td>
531
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
532
+ <td colspan="4"><center><strong>WMT</strong></center></td>
533
+ </tr>
534
+ <tr>
535
+ <td></td>
536
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
537
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
538
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
539
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
540
+ </tr>
541
+ <tr>
542
+ <td><strong>Model</strong></td>
543
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
544
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
545
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
546
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
547
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
548
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
549
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
550
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
551
+ </tr>
552
+ <tr>
553
+ <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center><strong>98.97</strong></center></td><td><center>86.02</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>27.94</center></td><td><center><strong>41.61</strong></center></td>
554
+ </tr>
555
+ <tr>
556
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>98.93</center></td><td><center><strong>88.33</strong></center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center><strong>28.43</strong></center></td><td><center>40.94</center></td>
557
+ </tr>
558
+ <tr>
559
+ <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>84.23</em></center></td><td><center><em>60.14</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>17.78</em></center></td><td><center><em>18.24</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
560
+ </tr>
561
+ <tr>
562
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>97.74</strong></center></td><td><center><strong>67.40</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center>27.32</center></td><td><center>15.96</center></td><td><center>-</center></td><td><center>-</center></td>
563
+ </tr>
564
+ <tr>
565
+ <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>82.84</center></td><td><center>65.95</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>28.16</strong></center></td><td><center>19.34</center></td><td><center>-</center></td><td><center>-</center></td>
566
+ </tr>
567
+ </tbody>
568
+ </table>
569
+
570
+
571
+ <table>
572
+ <tbody>
573
+ <tr>
574
+ <td></td>
575
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
576
+ <td colspan="4"><center><strong>STS</strong></center></td>
577
+ </tr>
578
+ <tr>
579
+ <td></td>
580
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
581
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
582
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
583
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
584
+ </tr>
585
+ <tr>
586
+ <td><strong>Model</strong></td>
587
+ <td><center><strong>(EM)</strong></center></td>
588
+ <td><center><strong>(F1)</strong></center></td>
589
+ <td><center><strong>(EM)</strong></center></td>
590
+ <td><center><strong>(F1)</strong></center></td>
591
+ <td><center><strong>(Spearman)</strong></center></td>
592
+ <td><center><strong>(Pearson)</strong></center></td>
593
+ <td><center><strong>(Spearman)</strong></center></td>
594
+ <td><center><strong>(Pearson)</strong></center></td>
595
+ </tr>
596
+ <tr>
597
+ <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center><strong>71.09</strong></center></td><td><center><strong>84.78</strong></center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>89.07</center></td><td><center>89.29</center></td>
598
+ </tr>
599
+ <tr>
600
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>50.00</center></td><td><center>64.10</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center><strong>89.45</strong></center></td><td><center><strong>89.89</strong></center></td>
601
+ </tr>
602
+ <tr>
603
+ <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>49.22</em></center></td><td><center><em>66.33</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>70.17</em></center></td><td><center><em>70.80</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
604
+ </tr>
605
+ <tr>
606
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>32.42</center></td><td><center>58.68</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>80.82</strong></center></td><td><center><strong>81.50</strong></center></td><td><center>-</center></td><td><center>-</center></td>
607
+ </tr>
608
+ <tr>
609
+ <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>30.82</center></td><td><center>48.53</center></td><td><center>-</center></td><td><center>-</center></td><td><center>73.24</center></td><td><center>73.13</center></td><td><center>-</center></td><td><center>-</center></td>
610
+ </tr>
611
+ </tbody>
612
+ </table>
613
+
614
+
615
+ ## MT-Bench
616
+
617
+ <table>
618
+ <tbody>
619
+ <tr>
620
+ <td><strong>Model</strong></td>
621
+ <td><strong><center>Average</center></strong></td>
622
+ <td><strong><center>1st turn</center></strong></td>
623
+ <td><strong><center>2nd turn</center></strong></td>
624
+ <td><strong><center>Answers in Ro</center></strong></td>
625
+ </tr>
626
+ <tr>
627
+ <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
628
+ </tr>
629
+ <tr>
630
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
631
+ </tr>
632
+ <tr>
633
+ <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>6.78</em></center></td><td><center><em>7.00</em></center></td><td><center><em>6.55</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
634
+ </tr>
635
+ <tr>
636
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>6.77</center></td><td><center>7.24</center></td><td><center>6.30</center></td><td><center><strong>160/160</strong></center></td>
637
+ </tr>
638
+ <tr>
639
+ <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>7.26</center></td><td><center>7.65</center></td><td><center>6.86</center></td><td><center><strong>160/160</strong></center></td>
640
+ </tr>
641
+ </tbody>
642
+ </table>
643
+
644
+
645
+ ## RoCulturaBench
646
+
647
+ <table>
648
+ <tbody>
649
+ <tr>
650
+ <td><strong>Model</strong></td>
651
+ <td><strong><center>Average</center></strong></td>
652
+ <td><strong><center>Answers in Ro</center></strong></td>
653
+ </tr>
654
+ <tr>
655
+ <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
656
+ </tr>
657
+ <tr>
658
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
659
+ </tr>
660
+ <tr>
661
+ <td><em>RoGemma2-9b-Instruct-2025-04-23</em></td><td><center><em>4.89</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
662
+ </tr>
663
+ <tr>
664
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>4.83</center></td><td><center><strong>100/100</strong></center></td>
665
+ </tr>
666
+ <tr>
667
+ <td>RoGemma2-9b-Instruct-DPO-2025-04-23</td><td><center>5.36</center></td><td><center><strong>100/100</strong></center></td>
668
+ </tr>
669
+ </tbody>
670
+ </table>
671
+
672
+
673
+ ## RoGemma2 Model Family
674
+
675
+ | Model | Link |
676
+ |--------------------|:--------:|
677
+ |RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
678
+ |*RoGemma2-9b-Instruct-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
679
+ |RoGemma2-9b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
680
+ |RoGemma2-9b-Instruct-DPO-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
681
+
682
+
683
+
684
+ ## Citation
685
+
686
+ ```
687
+ @misc{masala2024vorbecstiromanecsterecipetrain,
688
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
689
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
690
+ year={2024},
691
+ eprint={2406.18266},
692
+ archivePrefix={arXiv},
693
+ primaryClass={cs.CL},
694
+ url={https://arxiv.org/abs/2406.18266},
695
+ }
696
+ ```
697
+ <!-- **APA:**
698
+
699
  [More Information Needed] -->