mihaimasala commited on
Commit
8630d99
·
verified ·
1 Parent(s): c40925e

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +690 -655
README.md CHANGED
@@ -1,656 +1,691 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - ro
5
- base_model:
6
- - OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09
7
- datasets:
8
- - OpenLLM-Ro/ro_dpo_helpsteer
9
- model-index:
10
- - name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09
11
- results:
12
- - task:
13
- type: text-generation
14
- dataset:
15
- name: RoMT-Bench
16
- type: RoMT-Bench
17
- metrics:
18
- - name: Score
19
- type: Score
20
- value: 6.77
21
- - task:
22
- type: text-generation
23
- dataset:
24
- name: RoCulturaBench
25
- type: RoCulturaBench
26
- metrics:
27
- - name: Score
28
- type: Score
29
- value: 4.83
30
- - task:
31
- type: text-generation
32
- dataset:
33
- name: Romanian_Academic_Benchmarks
34
- type: Romanian_Academic_Benchmarks
35
- metrics:
36
- - name: Average accuracy
37
- type: accuracy
38
- value: 59.08
39
- - task:
40
- type: text-generation
41
- dataset:
42
- name: OpenLLM-Ro/ro_arc_challenge
43
- type: OpenLLM-Ro/ro_arc_challenge
44
- metrics:
45
- - name: Average accuracy
46
- type: accuracy
47
- value: 54.10
48
- - task:
49
- type: text-generation
50
- dataset:
51
- name: OpenLLM-Ro/ro_mmlu
52
- type: OpenLLM-Ro/ro_mmlu
53
- metrics:
54
- - name: Average accuracy
55
- type: accuracy
56
- value: 63.41
57
- - task:
58
- type: text-generation
59
- dataset:
60
- name: OpenLLM-Ro/ro_winogrande
61
- type: OpenLLM-Ro/ro_winogrande
62
- metrics:
63
- - name: Average accuracy
64
- type: accuracy
65
- value: 70.02
66
- - task:
67
- type: text-generation
68
- dataset:
69
- name: OpenLLM-Ro/ro_hellaswag
70
- type: OpenLLM-Ro/ro_hellaswag
71
- metrics:
72
- - name: Average accuracy
73
- type: accuracy
74
- value: 59.35
75
- - task:
76
- type: text-generation
77
- dataset:
78
- name: OpenLLM-Ro/ro_gsm8k
79
- type: OpenLLM-Ro/ro_gsm8k
80
- metrics:
81
- - name: Average accuracy
82
- type: accuracy
83
- value: 57.24
84
- - task:
85
- type: text-generation
86
- dataset:
87
- name: OpenLLM-Ro/ro_truthfulqa
88
- type: OpenLLM-Ro/ro_truthfulqa
89
- metrics:
90
- - name: Average accuracy
91
- type: accuracy
92
- value: 50.39
93
- - task:
94
- type: text-generation
95
- dataset:
96
- name: LaRoSeDa_binary
97
- type: LaRoSeDa_binary
98
- metrics:
99
- - name: Average macro-f1
100
- type: macro-f1
101
- value: 97.74
102
- - task:
103
- type: text-generation
104
- dataset:
105
- name: LaRoSeDa_multiclass
106
- type: LaRoSeDa_multiclass
107
- metrics:
108
- - name: Average macro-f1
109
- type: macro-f1
110
- value: 67.40
111
- - task:
112
- type: text-generation
113
- dataset:
114
- name: WMT_EN-RO
115
- type: WMT_EN-RO
116
- metrics:
117
- - name: Average bleu
118
- type: bleu
119
- value: 27.32
120
- - task:
121
- type: text-generation
122
- dataset:
123
- name: WMT_RO-EN
124
- type: WMT_RO-EN
125
- metrics:
126
- - name: Average bleu
127
- type: bleu
128
- value: 15.96
129
- - task:
130
- type: text-generation
131
- dataset:
132
- name: XQuAD
133
- type: XQuAD
134
- metrics:
135
- - name: Average exact_match
136
- type: exact_match
137
- value: 32.42
138
- - task:
139
- type: text-generation
140
- dataset:
141
- name: XQuAD
142
- type: XQuAD
143
- metrics:
144
- - name: Average f1
145
- type: f1
146
- value: 58.68
147
- - task:
148
- type: text-generation
149
- dataset:
150
- name: STS
151
- type: STS
152
- metrics:
153
- - name: Average spearman
154
- type: spearman
155
- value: 80.82
156
- - task:
157
- type: text-generation
158
- dataset:
159
- name: STS
160
- type: STS
161
- metrics:
162
- - name: Average pearson
163
- type: pearson
164
- value: 81.50
165
- - task:
166
- type: text-generation
167
- dataset:
168
- name: RoMT-Bench
169
- type: RoMT-Bench
170
- metrics:
171
- - name: First turn
172
- type: Score
173
- value: 7.24
174
- - name: Second turn
175
- type: Score
176
- value: 6.30
177
- - task:
178
- type: text-generation
179
- dataset:
180
- name: OpenLLM-Ro/ro_arc_challenge
181
- type: OpenLLM-Ro/ro_arc_challenge
182
- metrics:
183
- - name: 0-shot
184
- type: accuracy
185
- value: 51.59
186
- - name: 1-shot
187
- type: accuracy
188
- value: 50.99
189
- - name: 3-shot
190
- type: accuracy
191
- value: 53.47
192
- - name: 5-shot
193
- type: accuracy
194
- value: 54.84
195
- - name: 10-shot
196
- type: accuracy
197
- value: 58.10
198
- - name: 25-shot
199
- type: accuracy
200
- value: 55.61
201
- - task:
202
- type: text-generation
203
- dataset:
204
- name: OpenLLM-Ro/ro_mmlu
205
- type: OpenLLM-Ro/ro_mmlu
206
- metrics:
207
- - name: 0-shot
208
- type: accuracy
209
- value: 62.15
210
- - name: 1-shot
211
- type: accuracy
212
- value: 62.78
213
- - name: 3-shot
214
- type: accuracy
215
- value: 64.27
216
- - name: 5-shot
217
- type: accuracy
218
- value: 64.43
219
- - task:
220
- type: text-generation
221
- dataset:
222
- name: OpenLLM-Ro/ro_winogrande
223
- type: OpenLLM-Ro/ro_winogrande
224
- metrics:
225
- - name: 0-shot
226
- type: accuracy
227
- value: 66.69
228
- - name: 1-shot
229
- type: accuracy
230
- value: 68.82
231
- - name: 3-shot
232
- type: accuracy
233
- value: 71.82
234
- - name: 5-shot
235
- type: accuracy
236
- value: 72.77
237
- - task:
238
- type: text-generation
239
- dataset:
240
- name: OpenLLM-Ro/ro_hellaswag
241
- type: OpenLLM-Ro/ro_hellaswag
242
- metrics:
243
- - name: 0-shot
244
- type: accuracy
245
- value: 56.98
246
- - name: 1-shot
247
- type: accuracy
248
- value: 57.73
249
- - name: 3-shot
250
- type: accuracy
251
- value: 59.29
252
- - name: 5-shot
253
- type: accuracy
254
- value: 60.70
255
- - name: 10-shot
256
- type: accuracy
257
- value: 62.03
258
- - task:
259
- type: text-generation
260
- dataset:
261
- name: OpenLLM-Ro/ro_gsm8k
262
- type: OpenLLM-Ro/ro_gsm8k
263
- metrics:
264
- - name: 1-shot
265
- type: accuracy
266
- value: 46.78
267
- - name: 3-shot
268
- type: accuracy
269
- value: 59.97
270
- - name: 5-shot
271
- type: accuracy
272
- value: 64.97
273
- - task:
274
- type: text-generation
275
- dataset:
276
- name: LaRoSeDa_binary
277
- type: LaRoSeDa_binary
278
- metrics:
279
- - name: 0-shot
280
- type: macro-f1
281
- value: 97.30
282
- - name: 1-shot
283
- type: macro-f1
284
- value: 97.50
285
- - name: 3-shot
286
- type: macro-f1
287
- value: 97.83
288
- - name: 5-shot
289
- type: macro-f1
290
- value: 98.33
291
- - task:
292
- type: text-generation
293
- dataset:
294
- name: LaRoSeDa_multiclass
295
- type: LaRoSeDa_multiclass
296
- metrics:
297
- - name: 0-shot
298
- type: macro-f1
299
- value: 59.30
300
- - name: 1-shot
301
- type: macro-f1
302
- value: 65.52
303
- - name: 3-shot
304
- type: macro-f1
305
- value: 70.94
306
- - name: 5-shot
307
- type: macro-f1
308
- value: 73.85
309
- - task:
310
- type: text-generation
311
- dataset:
312
- name: WMT_EN-RO
313
- type: WMT_EN-RO
314
- metrics:
315
- - name: 0-shot
316
- type: bleu
317
- value: 17.49
318
- - name: 1-shot
319
- type: bleu
320
- value: 30.33
321
- - name: 3-shot
322
- type: bleu
323
- value: 30.58
324
- - name: 5-shot
325
- type: bleu
326
- value: 30.88
327
- - task:
328
- type: text-generation
329
- dataset:
330
- name: WMT_RO-EN
331
- type: WMT_RO-EN
332
- metrics:
333
- - name: 0-shot
334
- type: bleu
335
- value: 2.17
336
- - name: 1-shot
337
- type: bleu
338
- value: 10.69
339
- - name: 3-shot
340
- type: bleu
341
- value: 21.68
342
- - name: 5-shot
343
- type: bleu
344
- value: 29.28
345
- - task:
346
- type: text-generation
347
- dataset:
348
- name: XQuAD_EM
349
- type: XQuAD_EM
350
- metrics:
351
- - name: 0-shot
352
- type: exact_match
353
- value: 23.28
354
- - name: 1-shot
355
- type: exact_match
356
- value: 33.45
357
- - name: 3-shot
358
- type: exact_match
359
- value: 34.37
360
- - name: 5-shot
361
- type: exact_match
362
- value: 38.57
363
- - task:
364
- type: text-generation
365
- dataset:
366
- name: XQuAD_F1
367
- type: XQuAD_F1
368
- metrics:
369
- - name: 0-shot
370
- type: f1
371
- value: 47.16
372
- - name: 1-shot
373
- type: f1
374
- value: 60.28
375
- - name: 3-shot
376
- type: f1
377
- value: 62.09
378
- - name: 5-shot
379
- type: f1
380
- value: 65.20
381
- - task:
382
- type: text-generation
383
- dataset:
384
- name: STS_Spearman
385
- type: STS_Spearman
386
- metrics:
387
- - name: 1-shot
388
- type: spearman
389
- value: 75.34
390
- - name: 3-shot
391
- type: spearman
392
- value: 82.71
393
- - name: 5-shot
394
- type: spearman
395
- value: 84.41
396
- - task:
397
- type: text-generation
398
- dataset:
399
- name: STS_Pearson
400
- type: STS_Pearson
401
- metrics:
402
- - name: 1-shot
403
- type: pearson
404
- value: 77.97
405
- - name: 3-shot
406
- type: pearson
407
- value: 82.49
408
- - name: 5-shot
409
- type: pearson
410
- value: 84.05
411
-
412
- ---
413
-
414
- # Model Card for Model ID
415
-
416
- <!-- Provide a quick summary of what the model is/does. -->
417
-
418
- This model points/is identical to [RoGemma2-9b-Instruct-DPO-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09).
419
-
420
-
421
- RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page.
422
-
423
- ## Model Details
424
-
425
- ### Model Description
426
-
427
- <!-- Provide a longer summary of what this model is. -->
428
- OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
429
-
430
-
431
- - **Developed by:** OpenLLM-Ro
432
- <!-- - **Funded by [optional]:** [More Information Needed] -->
433
- <!-- - **Shared by [optional]:** [More Information Needed] -->
434
- <!-- - **Model type:** [More Information Needed] -->
435
- - **Language(s):** Romanian
436
- - **License:** cc-by-nc-4.0
437
- - **Finetuned from model:** [RoGemma2-9b-Instruct-2024-10-09](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09)
438
- - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer)
439
-
440
-
441
- ### Model Sources
442
-
443
- <!-- Provide the basic links for the model. -->
444
-
445
- - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
446
- - **Paper:** https://arxiv.org/abs/2406.18266
447
-
448
- ## Intended Use
449
-
450
- ### Intended Use Cases
451
-
452
- RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
453
-
454
- ### Out-of-Scope Use
455
-
456
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
457
-
458
- Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
459
-
460
-
461
-
462
- ## How to Get Started with the Model
463
-
464
- Use the code below to get started with the model.
465
-
466
- ```python
467
- from transformers import AutoTokenizer, AutoModelForCausalLM
468
-
469
- tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO")
470
- model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO")
471
-
472
- instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
473
- chat = [
474
- {"role": "user", "content": instruction},
475
- ]
476
- prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
477
-
478
- inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
479
- outputs = model.generate(input_ids=inputs, max_new_tokens=128)
480
- print(tokenizer.decode(outputs[0]))
481
- ```
482
-
483
- ## Academic Benchmarks
484
-
485
- <table>
486
- <tbody>
487
- <tr>
488
- <td><strong>Model</strong></td>
489
- <td><strong><center>Average</center></strong></td>
490
- <td><strong><center>ARC</center></strong></td>
491
- <td><strong><center>MMLU</center></strong></td>
492
- <td><strong><center>Winogrande</center></strong></td>
493
- <td><strong><center>Hellaswag</center></strong></td>
494
- <td><strong><center>GSM8k</center></strong></td>
495
- <td><strong><center>TruthfulQA</center></strong></td>
496
- </tr>
497
- <tr>
498
- <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center><strong>63.11</strong></center></td><td><center>41.95</center></td><td><center>53.03</center></td>
499
- </tr>
500
- <tr>
501
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center><strong>71.00</strong></center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center><strong>53.77</strong></center></td>
502
- </tr>
503
- <tr>
504
- <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>59.08</strong></em></center></td><td><center><em>54.10</em></center></td><td><center><em>63.41</em></center></td><td><center><em>70.02</em></center></td><td><center><em>59.35</em></center></td><td><center><em><strong>57.24</strong></em></center></td><td><center><em>50.39</em></center></td>
505
- </tr>
506
- </tbody>
507
- </table>
508
-
509
-
510
- ## Downstream tasks
511
-
512
- <table>
513
- <tbody>
514
- <tr>
515
- <td></td>
516
- <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
517
- <td colspan="4"><center><strong>WMT</strong></center></td>
518
- </tr>
519
- <tr>
520
- <td></td>
521
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
522
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
523
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
524
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
525
- </tr>
526
- <tr>
527
- <td><strong>Model</strong></td>
528
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
529
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
530
- <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
531
- <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
532
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
533
- <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
534
- <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
535
- <td><center><strong>RO-EN<br>(Bleu)</strong></center>
536
- </tr>
537
- <tr>
538
- <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center><strong>98.97</strong></center></td><td><center>86.02</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>27.94</center></td><td><center><strong>41.61</strong></center></td>
539
- </tr>
540
- <tr>
541
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>98.93</center></td><td><center><strong>88.33</strong></center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center><strong>28.43</strong></center></td><td><center>40.94</center></td>
542
- </tr>
543
- <tr>
544
- <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em><strong>97.74</strong></em></center></td><td><center><em><strong>67.40</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>27.32</strong></em></center></td><td><center><em>15.96</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
545
- </tr>
546
- </tbody>
547
- </table>
548
-
549
-
550
- <table>
551
- <tbody>
552
- <tr>
553
- <td></td>
554
- <td colspan="4"><center><strong>XQuAD</strong></center></td>
555
- <td colspan="4"><center><strong>STS</strong></center></td>
556
- </tr>
557
- <tr>
558
- <td></td>
559
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
560
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
561
- <td colspan="2"><center><strong>Few-shot</strong></center></td>
562
- <td colspan="2"><center><strong>Finetuned</strong></center></td>
563
- </tr>
564
- <tr>
565
- <td><strong>Model</strong></td>
566
- <td><center><strong>(EM)</strong></center></td>
567
- <td><center><strong>(F1)</strong></center></td>
568
- <td><center><strong>(EM)</strong></center></td>
569
- <td><center><strong>(F1)</strong></center></td>
570
- <td><center><strong>(Spearman)</strong></center></td>
571
- <td><center><strong>(Pearson)</strong></center></td>
572
- <td><center><strong>(Spearman)</strong></center></td>
573
- <td><center><strong>(Pearson)</strong></center></td>
574
- </tr>
575
- <tr>
576
- <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center><strong>71.09</strong></center></td><td><center><strong>84.78</strong></center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>89.07</center></td><td><center>89.29</center></td>
577
- </tr>
578
- <tr>
579
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>50.00</center></td><td><center>64.10</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center><strong>89.45</strong></center></td><td><center><strong>89.89</strong></center></td>
580
- </tr>
581
- <tr>
582
- <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>32.42</em></center></td><td><center><em>58.68</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>80.82</strong></em></center></td><td><center><em><strong>81.50</strong></em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
583
- </tr>
584
- </tbody>
585
- </table>
586
-
587
- ## MT-Bench
588
-
589
- <table>
590
- <tbody>
591
- <tr>
592
- <td><strong>Model</strong></td>
593
- <td><strong><center>Average</center></strong></td>
594
- <td><strong><center>1st turn</center></strong></td>
595
- <td><strong><center>2nd turn</center></strong></td>
596
- <td><strong><center>Answers in Ro</center></strong></td>
597
- </tr>
598
- <tr>
599
- <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
600
- </tr>
601
- <tr>
602
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
603
- </tr>
604
- <tr>
605
- <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>6.77</em></center></td><td><center><em>7.24</em></center></td><td><center><em>6.30</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
606
- </tr>
607
- </tbody>
608
- </table>
609
-
610
-
611
- ## RoCulturaBench
612
-
613
- <table>
614
- <tbody>
615
- <tr>
616
- <td><strong>Model</strong></td>
617
- <td><strong><center>Average</center></strong></td>
618
- <td><strong><center>Answers in Ro</center></strong></td>
619
- </tr>
620
- <tr>
621
- <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
622
- </tr>
623
- <tr>
624
- <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
625
- </tr>
626
- <tr>
627
- <td><em>RoGemma2-9b-Instruct-DPO-2024-10-09</em></td><td><center><em>4.83</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
628
- </tr>
629
- </tbody>
630
- </table>
631
-
632
-
633
- ## RoGemma2 Model Family
634
-
635
- | Model | Link |
636
- |--------------------|:--------:|
637
- |RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
638
- |*RoGemma2-9b-Instruct-DPO-2024-10-09*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
639
-
640
-
641
- ## Citation
642
-
643
- ```
644
- @misc{masala2024vorbecstiromanecsterecipetrain,
645
- title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
646
- author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
647
- year={2024},
648
- eprint={2406.18266},
649
- archivePrefix={arXiv},
650
- primaryClass={cs.CL},
651
- url={https://arxiv.org/abs/2406.18266},
652
- }
653
- ```
654
- <!-- **APA:**
655
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656
  [More Information Needed] -->
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - ro
5
+ base_model:
6
+ - OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23
7
+ datasets:
8
+ - OpenLLM-Ro/ro_dpo_helpsteer
9
+ - OpenLLM-Ro/ro_dpo_ultrafeedback
10
+ - OpenLLM-Ro/ro_dpo_magpie
11
+ - OpenLLM-Ro/ro_dpo_argilla_magpie
12
+ - OpenLLM-Ro/ro_dpo_helpsteer2
13
+ model-index:
14
+ - name: OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ dataset:
19
+ name: RoMT-Bench
20
+ type: RoMT-Bench
21
+ metrics:
22
+ - name: Score
23
+ type: Score
24
+ value: 7.26
25
+ - task:
26
+ type: text-generation
27
+ dataset:
28
+ name: RoCulturaBench
29
+ type: RoCulturaBench
30
+ metrics:
31
+ - name: Score
32
+ type: Score
33
+ value: 5.36
34
+ - task:
35
+ type: text-generation
36
+ dataset:
37
+ name: Romanian_Academic_Benchmarks
38
+ type: Romanian_Academic_Benchmarks
39
+ metrics:
40
+ - name: Average accuracy
41
+ type: accuracy
42
+ value: 59.79
43
+ - task:
44
+ type: text-generation
45
+ dataset:
46
+ name: OpenLLM-Ro/ro_arc_challenge
47
+ type: OpenLLM-Ro/ro_arc_challenge
48
+ metrics:
49
+ - name: Average accuracy
50
+ type: accuracy
51
+ value: 55.66
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ name: OpenLLM-Ro/ro_mmlu
56
+ type: OpenLLM-Ro/ro_mmlu
57
+ metrics:
58
+ - name: Average accuracy
59
+ type: accuracy
60
+ value: 64.00
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ name: OpenLLM-Ro/ro_winogrande
65
+ type: OpenLLM-Ro/ro_winogrande
66
+ metrics:
67
+ - name: Average accuracy
68
+ type: accuracy
69
+ value: 73.16
70
+ - task:
71
+ type: text-generation
72
+ dataset:
73
+ name: OpenLLM-Ro/ro_hellaswag
74
+ type: OpenLLM-Ro/ro_hellaswag
75
+ metrics:
76
+ - name: Average accuracy
77
+ type: accuracy
78
+ value: 64.26
79
+ - task:
80
+ type: text-generation
81
+ dataset:
82
+ name: OpenLLM-Ro/ro_gsm8k
83
+ type: OpenLLM-Ro/ro_gsm8k
84
+ metrics:
85
+ - name: Average accuracy
86
+ type: accuracy
87
+ value: 37.80
88
+ - task:
89
+ type: text-generation
90
+ dataset:
91
+ name: OpenLLM-Ro/ro_truthfulqa
92
+ type: OpenLLM-Ro/ro_truthfulqa
93
+ metrics:
94
+ - name: Average accuracy
95
+ type: accuracy
96
+ value: 63.86
97
+ - task:
98
+ type: text-generation
99
+ dataset:
100
+ name: LaRoSeDa_binary
101
+ type: LaRoSeDa_binary
102
+ metrics:
103
+ - name: Average macro-f1
104
+ type: macro-f1
105
+ value: 82.84
106
+ - task:
107
+ type: text-generation
108
+ dataset:
109
+ name: LaRoSeDa_multiclass
110
+ type: LaRoSeDa_multiclass
111
+ metrics:
112
+ - name: Average macro-f1
113
+ type: macro-f1
114
+ value: 65.95
115
+ - task:
116
+ type: text-generation
117
+ dataset:
118
+ name: WMT_EN-RO
119
+ type: WMT_EN-RO
120
+ metrics:
121
+ - name: Average bleu
122
+ type: bleu
123
+ value: 28.16
124
+ - task:
125
+ type: text-generation
126
+ dataset:
127
+ name: WMT_RO-EN
128
+ type: WMT_RO-EN
129
+ metrics:
130
+ - name: Average bleu
131
+ type: bleu
132
+ value: 19.34
133
+ - task:
134
+ type: text-generation
135
+ dataset:
136
+ name: XQuAD
137
+ type: XQuAD
138
+ metrics:
139
+ - name: Average exact_match
140
+ type: exact_match
141
+ value: 30.82
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ name: XQuAD
146
+ type: XQuAD
147
+ metrics:
148
+ - name: Average f1
149
+ type: f1
150
+ value: 48.53
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ name: STS
155
+ type: STS
156
+ metrics:
157
+ - name: Average spearman
158
+ type: spearman
159
+ value: 73.24
160
+ - task:
161
+ type: text-generation
162
+ dataset:
163
+ name: STS
164
+ type: STS
165
+ metrics:
166
+ - name: Average pearson
167
+ type: pearson
168
+ value: 73.13
169
+ - task:
170
+ type: text-generation
171
+ dataset:
172
+ name: RoMT-Bench
173
+ type: RoMT-Bench
174
+ metrics:
175
+ - name: First turn
176
+ type: Score
177
+ value: 7.65
178
+ - name: Second turn
179
+ type: Score
180
+ value: 6.86
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ name: OpenLLM-Ro/ro_arc_challenge
185
+ type: OpenLLM-Ro/ro_arc_challenge
186
+ metrics:
187
+ - name: 0-shot
188
+ type: accuracy
189
+ value: 52.44
190
+ - name: 1-shot
191
+ type: accuracy
192
+ value: 55.70
193
+ - name: 3-shot
194
+ type: accuracy
195
+ value: 56.47
196
+ - name: 5-shot
197
+ type: accuracy
198
+ value: 55.70
199
+ - name: 10-shot
200
+ type: accuracy
201
+ value: 57.16
202
+ - name: 25-shot
203
+ type: accuracy
204
+ value: 56.47
205
+ - task:
206
+ type: text-generation
207
+ dataset:
208
+ name: OpenLLM-Ro/ro_mmlu
209
+ type: OpenLLM-Ro/ro_mmlu
210
+ metrics:
211
+ - name: 0-shot
212
+ type: accuracy
213
+ value: 65.20
214
+ - name: 1-shot
215
+ type: accuracy
216
+ value: 63.27
217
+ - name: 3-shot
218
+ type: accuracy
219
+ value: 63.83
220
+ - name: 5-shot
221
+ type: accuracy
222
+ value: 63.69
223
+ - task:
224
+ type: text-generation
225
+ dataset:
226
+ name: OpenLLM-Ro/ro_winogrande
227
+ type: OpenLLM-Ro/ro_winogrande
228
+ metrics:
229
+ - name: 0-shot
230
+ type: accuracy
231
+ value: 74.11
232
+ - name: 1-shot
233
+ type: accuracy
234
+ value: 72.53
235
+ - name: 3-shot
236
+ type: accuracy
237
+ value: 72.93
238
+ - name: 5-shot
239
+ type: accuracy
240
+ value: 73.09
241
+ - task:
242
+ type: text-generation
243
+ dataset:
244
+ name: OpenLLM-Ro/ro_hellaswag
245
+ type: OpenLLM-Ro/ro_hellaswag
246
+ metrics:
247
+ - name: 0-shot
248
+ type: accuracy
249
+ value: 65.90
250
+ - name: 1-shot
251
+ type: accuracy
252
+ value: 66.06
253
+ - name: 3-shot
254
+ type: accuracy
255
+ value: 62.36
256
+ - name: 5-shot
257
+ type: accuracy
258
+ value: 61.87
259
+ - name: 10-shot
260
+ type: accuracy
261
+ value: 65.11
262
+ - task:
263
+ type: text-generation
264
+ dataset:
265
+ name: OpenLLM-Ro/ro_gsm8k
266
+ type: OpenLLM-Ro/ro_gsm8k
267
+ metrics:
268
+ - name: 1-shot
269
+ type: accuracy
270
+ value: 16.83
271
+ - name: 3-shot
272
+ type: accuracy
273
+ value: 43.21
274
+ - name: 5-shot
275
+ type: accuracy
276
+ value: 53.37
277
+ - task:
278
+ type: text-generation
279
+ dataset:
280
+ name: LaRoSeDa_binary
281
+ type: LaRoSeDa_binary
282
+ metrics:
283
+ - name: 0-shot
284
+ type: macro-f1
285
+ value: 39.18
286
+ - name: 1-shot
287
+ type: macro-f1
288
+ value: 96.59
289
+ - name: 3-shot
290
+ type: macro-f1
291
+ value: 97.63
292
+ - name: 5-shot
293
+ type: macro-f1
294
+ value: 97.97
295
+ - task:
296
+ type: text-generation
297
+ dataset:
298
+ name: LaRoSeDa_multiclass
299
+ type: LaRoSeDa_multiclass
300
+ metrics:
301
+ - name: 0-shot
302
+ type: macro-f1
303
+ value: 58.94
304
+ - name: 1-shot
305
+ type: macro-f1
306
+ value: 64.99
307
+ - name: 3-shot
308
+ type: macro-f1
309
+ value: 68.86
310
+ - name: 5-shot
311
+ type: macro-f1
312
+ value: 71.03
313
+ - task:
314
+ type: text-generation
315
+ dataset:
316
+ name: WMT_EN-RO
317
+ type: WMT_EN-RO
318
+ metrics:
319
+ - name: 0-shot
320
+ type: bleu
321
+ value: 26.89
322
+ - name: 1-shot
323
+ type: bleu
324
+ value: 31.18
325
+ - name: 3-shot
326
+ type: bleu
327
+ value: 30.65
328
+ - name: 5-shot
329
+ type: bleu
330
+ value: 23.91
331
+ - task:
332
+ type: text-generation
333
+ dataset:
334
+ name: WMT_RO-EN
335
+ type: WMT_RO-EN
336
+ metrics:
337
+ - name: 0-shot
338
+ type: bleu
339
+ value: 2.98
340
+ - name: 1-shot
341
+ type: bleu
342
+ value: 20.30
343
+ - name: 3-shot
344
+ type: bleu
345
+ value: 30.08
346
+ - name: 5-shot
347
+ type: bleu
348
+ value: 24.01
349
+ - task:
350
+ type: text-generation
351
+ dataset:
352
+ name: XQuAD_EM
353
+ type: XQuAD_EM
354
+ metrics:
355
+ - name: 0-shot
356
+ type: exact_match
357
+ value: 26.39
358
+ - name: 1-shot
359
+ type: exact_match
360
+ value: 23.87
361
+ - name: 3-shot
362
+ type: exact_match
363
+ value: 34.03
364
+ - name: 5-shot
365
+ type: exact_match
366
+ value: 38.99
367
+ - task:
368
+ type: text-generation
369
+ dataset:
370
+ name: XQuAD_F1
371
+ type: XQuAD_F1
372
+ metrics:
373
+ - name: 0-shot
374
+ type: f1
375
+ value: 43.28
376
+ - name: 1-shot
377
+ type: f1
378
+ value: 37.38
379
+ - name: 3-shot
380
+ type: f1
381
+ value: 54.08
382
+ - name: 5-shot
383
+ type: f1
384
+ value: 59.38
385
+ - task:
386
+ type: text-generation
387
+ dataset:
388
+ name: STS_Spearman
389
+ type: STS_Spearman
390
+ metrics:
391
+ - name: 1-shot
392
+ type: spearman
393
+ value: 73.46
394
+ - name: 3-shot
395
+ type: spearman
396
+ value: 73.55
397
+ - name: 5-shot
398
+ type: spearman
399
+ value: 72.70
400
+ - task:
401
+ type: text-generation
402
+ dataset:
403
+ name: STS_Pearson
404
+ type: STS_Pearson
405
+ metrics:
406
+ - name: 1-shot
407
+ type: pearson
408
+ value: 74.87
409
+ - name: 3-shot
410
+ type: pearson
411
+ value: 72.96
412
+ - name: 5-shot
413
+ type: pearson
414
+ value: 71.55
415
+
416
+ ---
417
+
418
+ # Model Card for Model ID
419
+
420
+ <!-- Provide a quick summary of what the model is/does. -->
421
+
422
+ RoGemma2 is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **human aligned instruct 9B model**. Links to other models can be found at the bottom of this page.
423
+
424
+ ## Model Details
425
+
426
+ ### Model Description
427
+
428
+ <!-- Provide a longer summary of what this model is. -->
429
+ OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants.
430
+
431
+
432
+ - **Developed by:** OpenLLM-Ro
433
+ <!-- - **Funded by [optional]:** [More Information Needed] -->
434
+ <!-- - **Shared by [optional]:** [More Information Needed] -->
435
+ <!-- - **Model type:** [More Information Needed] -->
436
+ - **Language(s):** Romanian
437
+ - **License:** cc-by-nc-4.0
438
+ - **Finetuned from model:** [RoGemma2-9b-Instruct-2025-04-23](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2025-04-23)
439
+ - **Trained using:** [RoHelpSteer](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer), [RoUltraFeedback](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_ultrafeedback), [RoMagpieDPO](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_magpie), [RoArgillaMagpie](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_argilla_magpie), [RoHelpSteer2](https://huggingface.co/datasets/OpenLLM-Ro/ro_dpo_helpsteer2)
440
+
441
+
442
+ ### Model Sources
443
+
444
+ <!-- Provide the basic links for the model. -->
445
+
446
+ - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory
447
+ - **Paper:** https://arxiv.org/abs/2406.18266
448
+
449
+ ## Intended Use
450
+
451
+ ### Intended Use Cases
452
+
453
+ RoGemma2 is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat.
454
+
455
+ ### Out-of-Scope Use
456
+
457
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
458
+
459
+ Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian.
460
+
461
+
462
+
463
+ ## How to Get Started with the Model
464
+
465
+ Use the code below to get started with the model.
466
+
467
+ ```python
468
+ from transformers import AutoTokenizer, AutoModelForCausalLM
469
+
470
+ tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-04-23")
471
+ model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2025-10-23")
472
+
473
+ instruction = "Ce jocuri de societate pot juca cu prietenii mei?"
474
+ chat = [
475
+ {"role": "user", "content": instruction},
476
+ ]
477
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="")
478
+
479
+ inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
480
+ outputs = model.generate(input_ids=inputs, max_new_tokens=128)
481
+ print(tokenizer.decode(outputs[0]))
482
+ ```
483
+
484
+ ## Academic Benchmarks
485
+
486
+ <table>
487
+ <tbody>
488
+ <tr>
489
+ <td><strong>Model</strong></td>
490
+ <td><strong><center>Average</center></strong></td>
491
+ <td><strong><center>ARC</center></strong></td>
492
+ <td><strong><center>MMLU</center></strong></td>
493
+ <td><strong><center>Winogrande</center></strong></td>
494
+ <td><strong><center>Hellaswag</center></strong></td>
495
+ <td><strong><center>GSM8k</center></strong></td>
496
+ <td><strong><center>TruthfulQA</center></strong></td>
497
+ </tr>
498
+ <tr>
499
+ <td>gemma-2-9b-it</td><td><center>56.22</center></td><td><center>50.33</center></td><td><center><strong>64.01</strong></center></td><td><center>64.88</center></td><td><center>63.11</center></td><td><center>41.95</center></td><td><center>53.03</center></td>
500
+ </tr>
501
+ <tr>
502
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>57.06</center></td><td><center><strong>56.20</strong></center></td><td><center>62.98</center></td><td><center>71.00</center></td><td><center>60.52</center></td><td><center>37.86</center></td><td><center>53.77</center></td>
503
+ </tr>
504
+ <tr>
505
+ <td>RoGemma2-9b-Instruct-2025-04-23</td><td><center>54.39</center></td><td><center>50.24</center></td><td><center>62.00</center></td><td><center>70.38</center></td><td><center>52.25</center></td><td><center>40.51</center></td><td><center>50.97</center></td>
506
+ </tr>
507
+ <tr>
508
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>59.08</center></td><td><center>54.10</center></td><td><center>63.41</center></td><td><center>70.02</center></td><td><center>59.35</center></td><td><center><strong>57.24</strong></center></td><td><center>50.39</center></td>
509
+ </tr>
510
+ <tr>
511
+ <td><em>RoGemma2-9b-Instruct-DPO-2025-04-23</em></td><td><center><em><strong>59.79</strong></em></center></td><td><center><em>55.66</em></center></td><td><center><em>64.00</em></center></td><td><center><em><strong>73.16</strong></em></center></td><td><center><em><strong>64.26</strong></em></center></td><td><center><em>37.80</em></center></td><td><center><em><strong>63.86</strong></em></center></td>
512
+ </tr>
513
+ </tbody>
514
+ </table>
515
+
516
+
517
+ ## Downstream tasks
518
+
519
+ <table>
520
+ <tbody>
521
+ <tr>
522
+ <td></td>
523
+ <td colspan="4"><center><strong>LaRoSeDa</strong></center></td>
524
+ <td colspan="4"><center><strong>WMT</strong></center></td>
525
+ </tr>
526
+ <tr>
527
+ <td></td>
528
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
529
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
530
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
531
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
532
+ </tr>
533
+ <tr>
534
+ <td><strong>Model</strong></td>
535
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
536
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
537
+ <td><center><strong>Binary<br>(Macro F1)</strong></center></td>
538
+ <td><center><strong>Multiclass<br>(Macro F1)</strong></center></td>
539
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
540
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center></td>
541
+ <td><center><strong>EN-RO<br>(Bleu)</strong></center></td>
542
+ <td><center><strong>RO-EN<br>(Bleu)</strong></center>
543
+ </tr>
544
+ <tr>
545
+ <td>gemma-2-9b-it</td><td><center>90.82</center></td><td><center>52.51</center></td><td><center><strong>98.97</strong></center></td><td><center>86.02</center></td><td><center>19.97</center></td><td><center><strong>28.94</strong></center></td><td><center>27.94</center></td><td><center><strong>41.61</strong></center></td>
546
+ </tr>
547
+ <tr>
548
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>96.19</center></td><td><center>62.49</center></td><td><center>98.93</center></td><td><center><strong>88.33</strong></center></td><td><center>25.74</center></td><td><center>23.16</center></td><td><center><strong>28.43</strong></center></td><td><center>40.94</center></td>
549
+ </tr>
550
+ <tr>
551
+ <td>RoGemma2-9b-Instruct-2025-04-23</td><td><center>84.23</center></td><td><center>60.14</center></td><td><center>-</center></td><td><center>-</center></td><td><center>17.78</center></td><td><center>18.24</center></td><td><center>-</center></td><td><center>-</center></td>
552
+ </tr>
553
+ <tr>
554
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center><strong>97.74</strong></center></td><td><center><strong>67.40</strong></center></td><td><center>-</center></td><td><center>-</center></td><td><center>27.32</center></td><td><center>15.96</center></td><td><center>-</center></td><td><center>-</center></td>
555
+ </tr>
556
+ <tr>
557
+ <td><em>RoGemma2-9b-Instruct-DPO-2025-04-23</em></td><td><center><em>82.84</em></center></td><td><center><em>65.95</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em><strong>28.16</strong></em></center></td><td><center><em>19.34</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
558
+ </tr>
559
+ </tbody>
560
+ </table>
561
+
562
+
563
+ <table>
564
+ <tbody>
565
+ <tr>
566
+ <td></td>
567
+ <td colspan="4"><center><strong>XQuAD</strong></center></td>
568
+ <td colspan="4"><center><strong>STS</strong></center></td>
569
+ </tr>
570
+ <tr>
571
+ <td></td>
572
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
573
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
574
+ <td colspan="2"><center><strong>Few-shot</strong></center></td>
575
+ <td colspan="2"><center><strong>Finetuned</strong></center></td>
576
+ </tr>
577
+ <tr>
578
+ <td><strong>Model</strong></td>
579
+ <td><center><strong>(EM)</strong></center></td>
580
+ <td><center><strong>(F1)</strong></center></td>
581
+ <td><center><strong>(EM)</strong></center></td>
582
+ <td><center><strong>(F1)</strong></center></td>
583
+ <td><center><strong>(Spearman)</strong></center></td>
584
+ <td><center><strong>(Pearson)</strong></center></td>
585
+ <td><center><strong>(Spearman)</strong></center></td>
586
+ <td><center><strong>(Pearson)</strong></center></td>
587
+ </tr>
588
+ <tr>
589
+ <td>gemma-2-9b-it</td><td><center>37.56</center></td><td><center>57.48</center></td><td><center><strong>71.09</strong></center></td><td><center><strong>84.78</strong></center></td><td><center>71.39</center></td><td><center>71.73</center></td><td><center>89.07</center></td><td><center>89.29</center></td>
590
+ </tr>
591
+ <tr>
592
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center><strong>51.37</strong></center></td><td><center><strong>70.74</strong></center></td><td><center>50.00</center></td><td><center>64.10</center></td><td><center>77.15</center></td><td><center>77.10</center></td><td><center><strong>89.45</strong></center></td><td><center><strong>89.89</strong></center></td>
593
+ </tr>
594
+ <tr>
595
+ <td>RoGemma2-9b-Instruct-2025-04-23</td><td><center>49.22</center></td><td><center>66.33</center></td><td><center>-</center></td><td><center>-</center></td><td><center>70.17</center></td><td><center>70.80</center></td><td><center>-</center></td><td><center>-</center></td>
596
+ </tr>
597
+ <tr>
598
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>32.42</center></td><td><center>58.68</center></td><td><center>-</center></td><td><center>-</center></td><td><center><strong>80.82</strong></center></td><td><center><strong>81.50</strong></center></td><td><center>-</center></td><td><center>-</center></td>
599
+ </tr>
600
+ <tr>
601
+ <td><em>RoGemma2-9b-Instruct-DPO-2025-04-23</em></td><td><center><em>30.82</em></center></td><td><center><em>48.53</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td><td><center><em>73.24</em></center></td><td><center><em>73.13</em></center></td><td><center><em>-</em></center></td><td><center><em>-</em></center></td>
602
+ </tr>
603
+ </tbody>
604
+ </table>
605
+
606
+
607
+ ## MT-Bench
608
+
609
+ <table>
610
+ <tbody>
611
+ <tr>
612
+ <td><strong>Model</strong></td>
613
+ <td><strong><center>Average</center></strong></td>
614
+ <td><strong><center>1st turn</center></strong></td>
615
+ <td><strong><center>2nd turn</center></strong></td>
616
+ <td><strong><center>Answers in Ro</center></strong></td>
617
+ </tr>
618
+ <tr>
619
+ <td>gemma-2-9b-it</td><td><center><strong>7.50</strong></center></td><td><center><strong>7.91</strong></center></td><td><center><strong>7.09</strong></center></td><td><center>159/160</center></td>
620
+ </tr>
621
+ <tr>
622
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>6.08</center></td><td><center>6.78</center></td><td><center>5.39</center></td><td><center><strong>160/160</strong></center></td>
623
+ </tr>
624
+ <tr>
625
+ <td>RoGemma2-9b-Instruct-2025-04-23</td><td><center>6.78</center></td><td><center>7.00</center></td><td><center>6.55</center></td><td><center><strong>160/160</strong></center></td>
626
+ </tr>
627
+ <tr>
628
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>6.77</center></td><td><center>7.24</center></td><td><center>6.30</center></td><td><center><strong>160/160</strong></center></td>
629
+ </tr>
630
+ <tr>
631
+ <td><em>RoGemma2-9b-Instruct-DPO-2025-04-23</em></td><td><center><em>7.26</em></center></td><td><center><em>7.65</em></center></td><td><center><em>6.86</em></center></td><td><center><em><strong>160/160</strong></em></center></td>
632
+ </tr>
633
+ </tbody>
634
+ </table>
635
+
636
+
637
+ ## RoCulturaBench
638
+
639
+ <table>
640
+ <tbody>
641
+ <tr>
642
+ <td><strong>Model</strong></td>
643
+ <td><strong><center>Average</center></strong></td>
644
+ <td><strong><center>Answers in Ro</center></strong></td>
645
+ </tr>
646
+ <tr>
647
+ <td>gemma-2-9b-it</td><td><center><strong>5.68</strong></center></td><td><center><strong>100/100</strong></center></td>
648
+ </tr>
649
+ <tr>
650
+ <td>RoGemma2-9b-Instruct-2024-10-09</td><td><center>4.20</center></td><td><center><strong>100/100</strong></center></td>
651
+ </tr>
652
+ <tr>
653
+ <td>RoGemma2-9b-Instruct-2025-04-23</td><td><center>4.89</center></td><td><center><strong>100/100</strong></center></td>
654
+ </tr>
655
+ <tr>
656
+ <td>RoGemma2-9b-Instruct-DPO-2024-10-09</td><td><center>4.83</center></td><td><center><strong>100/100</strong></center></td>
657
+ </tr>
658
+ <tr>
659
+ <td><em>RoGemma2-9b-Instruct-DPO-2025-04-23</em></td><td><center><em>5.36</em></center></td><td><center><em><strong>100/100</strong></em></center></td>
660
+ </tr>
661
+ </tbody>
662
+ </table>
663
+
664
+
665
+ ## RoGemma2 Model Family
666
+
667
+ | Model | Link |
668
+ |--------------------|:--------:|
669
+ |RoGemma2-9b-Instruct-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
670
+ |RoGemma2-9b-Instruct-2025-04-23| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-2024-10-09) |
671
+ |RoGemma2-9b-Instruct-DPO-2024-10-09| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
672
+ |*RoGemma2-9b-Instruct-DPO-2025-04-23*| [link](https://huggingface.co/OpenLLM-Ro/RoGemma2-9b-Instruct-DPO-2024-10-09) |
673
+
674
+
675
+
676
+ ## Citation
677
+
678
+ ```
679
+ @misc{masala2024vorbecstiromanecsterecipetrain,
680
+ title={"Vorbe\c{s}ti Rom\^ane\c{s}te?" A Recipe to Train Powerful Romanian LLMs with English Instructions},
681
+ author={Mihai Masala and Denis C. Ilie-Ablachim and Alexandru Dima and Dragos Corlatescu and Miruna Zavelca and Ovio Olaru and Simina Terian-Dan and Andrei Terian-Dan and Marius Leordeanu and Horia Velicu and Marius Popescu and Mihai Dascalu and Traian Rebedea},
682
+ year={2024},
683
+ eprint={2406.18266},
684
+ archivePrefix={arXiv},
685
+ primaryClass={cs.CL},
686
+ url={https://arxiv.org/abs/2406.18266},
687
+ }
688
+ ```
689
+ <!-- **APA:**
690
+
691
  [More Information Needed] -->