Ontario commited on
Commit
62949ff
·
verified ·
1 Parent(s): 8ab8a4a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -121
README.md CHANGED
@@ -1,122 +1,122 @@
1
- ---
2
- model_name: "Qwen3-0.6B-en-law-qa"
3
- finetuned_by: "Ahsan Ahmed Khan (Ontario)"
4
- model_type: "Fine-tuned Causal Language Model for Legal Q&A"
5
- base_model: "Qwen/Qwen3-0.6B"
6
- language: "en"
7
- finetuning_method: "LoRA (Low-Rank Adaptation)"
8
- license: "apache-2.0"
9
- datasets:
10
- - "haistudy/en_law_qa"
11
- tags:
12
- - "legal"
13
- - "question-answering"
14
- - "law"
15
- - "instruction-tuned"
16
- ---
17
-
18
- # Model Card for Qwen3-0.6B-en-law-qa
19
-
20
- ## Model Details
21
- - **Developed by:** [Your Name/Organization]
22
- - **Base Model:** [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
23
- - **Dataset:** [haistudy/en_law_qa](https://huggingface.co/datasets/haistudy/en_law_qa)
24
- - **Language:** English
25
- - **License:** Apache 2.0
26
- - **Fine-tuning Approach:** Parameter-Efficient Fine-Tuning (LoRA)
27
-
28
- ## Model Description
29
- Fine-tuned version of Qwen3-0.6B optimized for legal question answering. Trained on 5,560 legal QA pairs covering:
30
- - Contract law
31
- - Intellectual property
32
- - Criminal law
33
- - Family law
34
- - Environmental law
35
-
36
- ## Intended Uses
37
- ✅ Legal research assistance
38
- ✅ Legal education
39
- ✅ Explaining legal concepts
40
- ❌ Actual legal advice
41
- ❌ Handling sensitive personal legal matters
42
-
43
- ## Training Configuration
44
- training_parameters:
45
- epochs: 73 (partial training)
46
- batch_size: 16
47
- gradient_accumulation_steps: 16
48
- learning_rate: 2e-4
49
- optimizer: "paged_adamw_8bit"
50
-
51
- quantization:
52
- load_in_4bit: true
53
- bnb_4bit_quant_type: "nf4"
54
- bnb_4bit_compute_dtype: "bfloat16"
55
-
56
- lora_config:
57
- r: 8
58
- lora_alpha: 32
59
- target_modules:
60
- - "q_proj"
61
- - "k_proj"
62
- - "v_proj"
63
- - "o_proj"
64
- lora_dropout: 0.05
65
- bias: "none"
66
-
67
- Usage Example
68
-
69
- from transformers import AutoTokenizer, AutoModelForCausalLM
70
- from peft import PeftModel
71
-
72
- model_name = "Qwen/Qwen3-0.6B"
73
- tokenizer = AutoTokenizer.from_pretrained(model_name)
74
- base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
75
- model = PeftModel.from_pretrained(base_model, "your-username/Qwen3-0.6B-en-law-qa")
76
-
77
- # Create prompt
78
- question = "What are the key elements of a valid contract?"
79
- messages = [
80
- {"role": "user", "content": question}
81
- ]
82
- text = tokenizer.apply_chat_template(
83
- messages,
84
- tokenize=False,
85
- add_generation_prompt=True
86
- )
87
-
88
- # Generate response
89
- inputs = tokenizer(text, return_tensors="pt").to(model.device)
90
- outputs = model.generate(**inputs, max_new_tokens=256)
91
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
92
- Training Data
93
- yaml
94
- dataset_stats:
95
- samples: 5560
96
- format: |
97
- <|im_start|>user
98
- {Question}<|im_end|>
99
- <|im_start|>assistant
100
- {Answer}<|im_end|>
101
- data_sources:
102
- - Contract law
103
- - Intellectual property
104
- - Criminal law
105
- - Family law
106
- - Environmental law
107
- Limitations
108
- Limited to knowledge in training data (2023 cutoff)
109
-
110
- May generate plausible but incorrect information
111
-
112
- Not a substitute for professional legal advice
113
-
114
- English-only capability
115
-
116
- Environmental Impact
117
- Hardware: 1 × NVIDIA T4 GPU (Google Colab)
118
- CO2 Emissions: ≈0.8 kg (estimated during partial training)
119
- Calculated using Machine Learning Impact calculator
120
-
121
- Contact
122
  For questions or feedback: ahsanahmedkhan@proton.me
 
1
+ ---
2
+ model_name: "Qwen3-0.6B-en-law-qa"
3
+ finetuned_by: "Ahsan Ahmed Khan (Ontario)"
4
+ model_type: "Fine-tuned Causal Language Model for Legal Q&A"
5
+ base_model: "Qwen/Qwen3-0.6B"
6
+ language: "en"
7
+ finetuning_method: "LoRA (Low-Rank Adaptation)"
8
+ license: "apache-2.0"
9
+ datasets:
10
+ - "haistudy/en_law_qa"
11
+ tags:
12
+ - "legal"
13
+ - "question-answering"
14
+ - "law"
15
+ - "instruction-tuned"
16
+ ---
17
+
18
+ # Model Card for Qwen3-0.6B-en-law-qa
19
+
20
+ ## Model Details
21
+ - **Developed by:** Ontario (Ahsan Ahmed KHan)
22
+ - **Base Model:** [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B)
23
+ - **Dataset:** [haistudy/en_law_qa](https://huggingface.co/datasets/haistudy/en_law_qa)
24
+ - **Language:** English
25
+ - **License:** Apache 2.0
26
+ - **Fine-tuning Approach:** Parameter-Efficient Fine-Tuning (LoRA)
27
+
28
+ ## Model Description
29
+ Fine-tuned version of Qwen3-0.6B optimized for legal question answering. Trained on 5,560 legal QA pairs covering:
30
+ - Contract law
31
+ - Intellectual property
32
+ - Criminal law
33
+ - Family law
34
+ - Environmental law
35
+
36
+ ## Intended Uses
37
+ ✅ Legal research assistance
38
+ ✅ Legal education
39
+ ✅ Explaining legal concepts
40
+ ❌ Actual legal advice
41
+ ❌ Handling sensitive personal legal matters
42
+
43
+ ## Training Configuration
44
+ training_parameters:
45
+ epochs: 73 (partial training)
46
+ batch_size: 16
47
+ gradient_accumulation_steps: 16
48
+ learning_rate: 2e-4
49
+ optimizer: "paged_adamw_8bit"
50
+
51
+ quantization:
52
+ load_in_4bit: true
53
+ bnb_4bit_quant_type: "nf4"
54
+ bnb_4bit_compute_dtype: "bfloat16"
55
+
56
+ lora_config:
57
+ r: 8
58
+ lora_alpha: 32
59
+ target_modules:
60
+ - "q_proj"
61
+ - "k_proj"
62
+ - "v_proj"
63
+ - "o_proj"
64
+ lora_dropout: 0.05
65
+ bias: "none"
66
+
67
+ Usage Example
68
+
69
+ from transformers import AutoTokenizer, AutoModelForCausalLM
70
+ from peft import PeftModel
71
+
72
+ model_name = "Qwen/Qwen3-0.6B"
73
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
74
+ base_model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
75
+ model = PeftModel.from_pretrained(base_model, "your-username/Qwen3-0.6B-en-law-qa")
76
+
77
+ # Create prompt
78
+ question = "What are the key elements of a valid contract?"
79
+ messages = [
80
+ {"role": "user", "content": question}
81
+ ]
82
+ text = tokenizer.apply_chat_template(
83
+ messages,
84
+ tokenize=False,
85
+ add_generation_prompt=True
86
+ )
87
+
88
+ # Generate response
89
+ inputs = tokenizer(text, return_tensors="pt").to(model.device)
90
+ outputs = model.generate(**inputs, max_new_tokens=256)
91
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
92
+ Training Data
93
+ yaml
94
+ dataset_stats:
95
+ samples: 5560
96
+ format: |
97
+ <|im_start|>user
98
+ {Question}<|im_end|>
99
+ <|im_start|>assistant
100
+ {Answer}<|im_end|>
101
+ data_sources:
102
+ - Contract law
103
+ - Intellectual property
104
+ - Criminal law
105
+ - Family law
106
+ - Environmental law
107
+ Limitations
108
+ Limited to knowledge in training data (2023 cutoff)
109
+
110
+ May generate plausible but incorrect information
111
+
112
+ Not a substitute for professional legal advice
113
+
114
+ English-only capability
115
+
116
+ Environmental Impact
117
+ Hardware: 1 × NVIDIA T4 GPU (Google Colab)
118
+ CO2 Emissions: ≈0.8 kg (estimated during partial training)
119
+ Calculated using Machine Learning Impact calculator
120
+
121
+ Contact
122
  For questions or feedback: ahsanahmedkhan@proton.me