Commit
15458e1
·
verified ·
1 Parent(s): a6bf9f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -104,7 +104,7 @@ language:
104
 
105
  # Ara-EuroBERT: Arabic Semantic Text Embeddings
106
 
107
- <img src="https://i.ibb.co/d4svDscP/Clear-Familiar-situations-that-you-already-have-best-practices-for-4.png" width="120" align="left"/>
108
 
109
  Ara-EuroBERT is a [sentence-transformers](https://www.SBERT.net) model fine-tuned from [EuroBERT/EuroBERT-610m](https://huggingface.co/EuroBERT/EuroBERT-610m) specifically optimized for **Semantic Arabic text embeddings**.
110
 
@@ -115,11 +115,28 @@ It can be used for semantic textual similarity, semantic search, paraphrase mini
115
 
116
  <br clear="left"/>
117
 
118
- ## Model Details
119
 
120
  <img src="https://cdn-uploads.huggingface.co/production/uploads/628f7a71dd993507cfcbe587/Kv78q7NmI3hhOXkRv30s9.png" width="1000" align="center"/>
121
 
 
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
 
125
  ### Model Description
 
104
 
105
  # Ara-EuroBERT: Arabic Semantic Text Embeddings
106
 
107
+ <img src="https://i.ibb.co/d4svDscP/Clear-Familiar-situations-that-you-already-have-best-practices-for-4.png" width="150" align="left"/>
108
 
109
  Ara-EuroBERT is a [sentence-transformers](https://www.SBERT.net) model fine-tuned from [EuroBERT/EuroBERT-610m](https://huggingface.co/EuroBERT/EuroBERT-610m) specifically optimized for **Semantic Arabic text embeddings**.
110
 
 
115
 
116
  <br clear="left"/>
117
 
118
+ ## Model Details & Benchmark Performance
119
 
120
  <img src="https://cdn-uploads.huggingface.co/production/uploads/628f7a71dd993507cfcbe587/Kv78q7NmI3hhOXkRv30s9.png" width="1000" align="center"/>
121
 
122
+ The benchmark results above demonstrate the significant performance improvements of AraEuroBERT models compared to standard EuroBERT models:
123
 
124
+ - **STS17 Benchmark**: AraEuroBERT-610M achieves a score of 83, significantly outperforming the standard EuroBERT-610M (14) and even the much larger EuroBERT-2.1B (12).
125
+ - **STS22.v2 Benchmark**: AraEuroBERT-210M scores 61, outperforming both the larger AraEuroBERT-610M (53) and all standard EuroBERT variants.
126
+
127
+ These results highlight the effectiveness of our specialized fine-tuning for Arabic text embeddings, with even our smaller 210M parameter model demonstrating superior performance on Arabic semantic tasks.
128
+
129
+ ### Metrics
130
+
131
+ #### Semantic Similarity
132
+
133
+ * Datasets: `sts-dev-1152`, `sts-dev-960`, `sts-dev-768` and `sts-dev-512`
134
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
135
+
136
+ | Metric | sts-dev-1152 | sts-dev-960 | sts-dev-768 | sts-dev-512 |
137
+ |:--------------------|:-------------|:------------|:------------|:------------|
138
+ | pearson_cosine | 0.8264 | 0.8259 | 0.8244 | 0.8238 |
139
+ | **spearman_cosine** | **0.8307** | **0.8302** | **0.8293** | **0.8293** |
140
 
141
 
142
  ### Model Description