Update README.md
Browse files
README.md
CHANGED
@@ -55,9 +55,15 @@ widget:
|
|
55 |
- Tshirts
|
56 |
- Fall
|
57 |
- Casual
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
---
|
59 |
|
60 |
-
# SentenceTransformer based on
|
61 |
|
62 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
63 |
|
@@ -104,7 +110,7 @@ Then you can load this model and run inference.
|
|
104 |
from sentence_transformers import SentenceTransformer
|
105 |
|
106 |
# Download from the 🤗 Hub
|
107 |
-
model = SentenceTransformer("
|
108 |
# Run inference
|
109 |
sentences = [
|
110 |
'Men',
|
@@ -165,14 +171,14 @@ You can finetune this model on your own dataset.
|
|
165 |
|
166 |
|
167 |
* Size: 44,072 training samples
|
168 |
-
* Columns: <code>
|
169 |
* Approximate statistics based on the first 1000 samples:
|
170 |
-
| | sentence_0 | sentence_1 |
|
171 |
|:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
172 |
| type | string | string | string | string | string | string | string | string |
|
173 |
| details | <ul><li>min: 3 tokens</li><li>mean: 3.1 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.26 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.62 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.9 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.08 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.13 tokens</li><li>max: 28 tokens</li></ul> |
|
174 |
* Samples:
|
175 |
-
|
|
176 |
|:-------------------|:-------------------------|:-------------------|:--------------------------|:-------------------|:--------------------|:--------------------|:------------------------------------------------------|
|
177 |
| <code>Women</code> | <code>Footwear</code> | <code>Shoes</code> | <code>Heels</code> | <code>Gold</code> | <code>Summer</code> | <code>Casual</code> | <code>Enroute Women Gold Flats</code> |
|
178 |
| <code>Men</code> | <code>Accessories</code> | <code>Belts</code> | <code>Belts</code> | <code>Black</code> | <code>Fall</code> | <code>Casual</code> | <code>Wrangler Textured Men Black Belts</code> |
|
|
|
55 |
- Tshirts
|
56 |
- Fall
|
57 |
- Casual
|
58 |
+
license: mit
|
59 |
+
datasets:
|
60 |
+
- MohamedAshraf701/Products-Details
|
61 |
+
language:
|
62 |
+
- en
|
63 |
+
new_version: MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products
|
64 |
---
|
65 |
|
66 |
+
# SentenceTransformer based on MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products
|
67 |
|
68 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
69 |
|
|
|
110 |
from sentence_transformers import SentenceTransformer
|
111 |
|
112 |
# Download from the 🤗 Hub
|
113 |
+
model = SentenceTransformer("MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products")
|
114 |
# Run inference
|
115 |
sentences = [
|
116 |
'Men',
|
|
|
171 |
|
172 |
|
173 |
* Size: 44,072 training samples
|
174 |
+
* Columns: <code>gender</code>, <code>masterCategory</code>, <code>subCategory</code>, <code>articleType</code>, <code>baseColour</code>, <code>season</code>, <code>usage</code>, and <code>sentence_7</code>
|
175 |
* Approximate statistics based on the first 1000 samples:
|
176 |
+
| | sentence_0 | sentence_1 | productDisplayName | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
|
177 |
|:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
178 |
| type | string | string | string | string | string | string | string | string |
|
179 |
| details | <ul><li>min: 3 tokens</li><li>mean: 3.1 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.26 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.62 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.9 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.08 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.13 tokens</li><li>max: 28 tokens</li></ul> |
|
180 |
* Samples:
|
181 |
+
| gender | masterCategory | subCategory | articleType | baseColour | season | usage | productDisplayName |
|
182 |
|:-------------------|:-------------------------|:-------------------|:--------------------------|:-------------------|:--------------------|:--------------------|:------------------------------------------------------|
|
183 |
| <code>Women</code> | <code>Footwear</code> | <code>Shoes</code> | <code>Heels</code> | <code>Gold</code> | <code>Summer</code> | <code>Casual</code> | <code>Enroute Women Gold Flats</code> |
|
184 |
| <code>Men</code> | <code>Accessories</code> | <code>Belts</code> | <code>Belts</code> | <code>Black</code> | <code>Fall</code> | <code>Casual</code> | <code>Wrangler Textured Men Black Belts</code> |
|