MohamedAshraf701 commited on
Commit
c4e52e0
·
verified ·
1 Parent(s): 9b279ab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -5
README.md CHANGED
@@ -55,9 +55,15 @@ widget:
55
  - Tshirts
56
  - Fall
57
  - Casual
 
 
 
 
 
 
58
  ---
59
 
60
- # SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
61
 
62
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
 
@@ -104,7 +110,7 @@ Then you can load this model and run inference.
104
  from sentence_transformers import SentenceTransformer
105
 
106
  # Download from the 🤗 Hub
107
- model = SentenceTransformer("sentence_transformers_model_id")
108
  # Run inference
109
  sentences = [
110
  'Men',
@@ -165,14 +171,14 @@ You can finetune this model on your own dataset.
165
 
166
 
167
  * Size: 44,072 training samples
168
- * Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, and <code>sentence_7</code>
169
  * Approximate statistics based on the first 1000 samples:
170
- | | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
171
  |:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
172
  | type | string | string | string | string | string | string | string | string |
173
  | details | <ul><li>min: 3 tokens</li><li>mean: 3.1 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.26 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.62 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.9 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.08 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.13 tokens</li><li>max: 28 tokens</li></ul> |
174
  * Samples:
175
- | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
176
  |:-------------------|:-------------------------|:-------------------|:--------------------------|:-------------------|:--------------------|:--------------------|:------------------------------------------------------|
177
  | <code>Women</code> | <code>Footwear</code> | <code>Shoes</code> | <code>Heels</code> | <code>Gold</code> | <code>Summer</code> | <code>Casual</code> | <code>Enroute Women Gold Flats</code> |
178
  | <code>Men</code> | <code>Accessories</code> | <code>Belts</code> | <code>Belts</code> | <code>Black</code> | <code>Fall</code> | <code>Casual</code> | <code>Wrangler Textured Men Black Belts</code> |
 
55
  - Tshirts
56
  - Fall
57
  - Casual
58
+ license: mit
59
+ datasets:
60
+ - MohamedAshraf701/Products-Details
61
+ language:
62
+ - en
63
+ new_version: MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products
64
  ---
65
 
66
+ # SentenceTransformer based on MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products
67
 
68
  This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
69
 
 
110
  from sentence_transformers import SentenceTransformer
111
 
112
  # Download from the 🤗 Hub
113
+ model = SentenceTransformer("MohamedAshraf701/multi-qa-MiniLM-L6-cos-v1-products")
114
  # Run inference
115
  sentences = [
116
  'Men',
 
171
 
172
 
173
  * Size: 44,072 training samples
174
+ * Columns: <code>gender</code>, <code>masterCategory</code>, <code>subCategory</code>, <code>articleType</code>, <code>baseColour</code>, <code>season</code>, <code>usage</code>, and <code>sentence_7</code>
175
  * Approximate statistics based on the first 1000 samples:
176
+ | | sentence_0 | sentence_1 | productDisplayName | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 |
177
  |:--------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
178
  | type | string | string | string | string | string | string | string | string |
179
  | details | <ul><li>min: 3 tokens</li><li>mean: 3.1 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.26 tokens</li><li>max: 4 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.62 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.9 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.08 tokens</li><li>max: 5 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.13 tokens</li><li>max: 28 tokens</li></ul> |
180
  * Samples:
181
+ | gender | masterCategory | subCategory | articleType | baseColour | season | usage | productDisplayName |
182
  |:-------------------|:-------------------------|:-------------------|:--------------------------|:-------------------|:--------------------|:--------------------|:------------------------------------------------------|
183
  | <code>Women</code> | <code>Footwear</code> | <code>Shoes</code> | <code>Heels</code> | <code>Gold</code> | <code>Summer</code> | <code>Casual</code> | <code>Enroute Women Gold Flats</code> |
184
  | <code>Men</code> | <code>Accessories</code> | <code>Belts</code> | <code>Belts</code> | <code>Black</code> | <code>Fall</code> | <code>Casual</code> | <code>Wrangler Textured Men Black Belts</code> |