lbourdois commited on
Commit
37f7b4b
·
verified ·
1 Parent(s): 877b1f8

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +68 -56
README.md CHANGED
@@ -1,57 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
4
- language:
5
- - en
6
- base_model: Qwen/Qwen2.5-0.5B
7
- pipeline_tag: text-generation
8
- tags:
9
- - gptqmodel
10
- - modelcloud
11
- - chat
12
- - qwen2
13
- - instruct
14
- - int4
15
- - gptq
16
- - 4bit
17
- - W4A16
18
- ---
19
-
20
- This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
21
-
22
- - **bits**: 4
23
- - **dynamic**: null
24
- - **group_size**: 128
25
- - **desc_act**: true
26
- - **static_groups**: false
27
- - **sym**: true
28
- - **lm_head**: false
29
- - **true_sequential**: true
30
- - **quant_method**: "gptq"
31
- - **checkpoint_format**: "gptq"
32
- - **meta**:
33
- - **quantizer**: gptqmodel:1.7.0
34
- - **uri**: https://github.com/modelcloud/gptqmodel
35
- - **damp_percent**: 0.1
36
- - **damp_auto_increment**: 0.0025
37
-
38
-
39
- ## Example:
40
- ```python
41
- from transformers import AutoTokenizer
42
- from gptqmodel import GPTQModel
43
-
44
- tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
45
- model = GPTQModel.load("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
46
-
47
- messages = [
48
- {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
49
- {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
50
- ]
51
- input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
52
-
53
- outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
54
- result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
55
-
56
- print(result)
 
 
 
 
 
 
 
 
 
 
 
 
57
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE
4
+ language:
5
+ - zho
6
+ - eng
7
+ - fra
8
+ - spa
9
+ - por
10
+ - deu
11
+ - ita
12
+ - rus
13
+ - jpn
14
+ - kor
15
+ - vie
16
+ - tha
17
+ - ara
18
+ base_model: Qwen/Qwen2.5-0.5B
19
+ pipeline_tag: text-generation
20
+ tags:
21
+ - gptqmodel
22
+ - modelcloud
23
+ - chat
24
+ - qwen2
25
+ - instruct
26
+ - int4
27
+ - gptq
28
+ - 4bit
29
+ - W4A16
30
+ ---
31
+
32
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
33
+
34
+ - **bits**: 4
35
+ - **dynamic**: null
36
+ - **group_size**: 128
37
+ - **desc_act**: true
38
+ - **static_groups**: false
39
+ - **sym**: true
40
+ - **lm_head**: false
41
+ - **true_sequential**: true
42
+ - **quant_method**: "gptq"
43
+ - **checkpoint_format**: "gptq"
44
+ - **meta**:
45
+ - **quantizer**: gptqmodel:1.7.0
46
+ - **uri**: https://github.com/modelcloud/gptqmodel
47
+ - **damp_percent**: 0.1
48
+ - **damp_auto_increment**: 0.0025
49
+
50
+
51
+ ## Example:
52
+ ```python
53
+ from transformers import AutoTokenizer
54
+ from gptqmodel import GPTQModel
55
+
56
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
57
+ model = GPTQModel.load("ModelCloud/Qwen2.5-0.5B-Instruct-gptqmodel-4bit")
58
+
59
+ messages = [
60
+ {"role": "system", "content": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."},
61
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
62
+ ]
63
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
64
+
65
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
66
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
67
+
68
+ print(result)
69
  ```