Upload README.md
Browse files
README.md
CHANGED
@@ -1,55 +1,55 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
```
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
```
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
{'training_loss': tensor(4.8380, device='cuda:0'), 'train_loss_ce': tensor(1.9076, device='cuda:0'), 'train_loss_bbox': tensor(0.2720, device='cuda:0'), 'train_loss_giou': tensor(0.7852, device='cuda:0'), 'train_cardinality_error': tensor(40.5000, device='cuda:0'), 'validation_loss': tensor(4.6572, device='cuda:0'), 'validation_loss_ce': tensor(1.9323, device='cuda:0'), 'validation_loss_bbox': tensor(0.2644, device='cuda:0'), 'validation_loss_giou': tensor(0.7016, device='cuda:0'), 'validation_cardinality_error': tensor(64.3898, device='cuda:0')}
|
54 |
{'training_loss': tensor(4.6511, device='cuda:0'), 'train_loss_ce': tensor(1.7157, device='cuda:0'), 'train_loss_bbox': tensor(0.2469, device='cuda:0'), 'train_loss_giou': tensor(0.8504, device='cuda:0'), 'train_cardinality_error': tensor(18.5000, device='cuda:0'), 'validation_loss': tensor(3.6326, device='cuda:0'), 'validation_loss_ce': tensor(1.5263, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(5.3277, device='cuda:0')}
|
55 |
{'training_loss': tensor(4.4295, device='cuda:0'), 'train_loss_ce': tensor(1.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.9268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9645, device='cuda:0'), 'validation_loss_ce': tensor(1.0482, device='cuda:0'), 'validation_loss_bbox': tensor(0.1677, device='cuda:0'), 'validation_loss_giou': tensor(0.5388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
@@ -650,10 +650,10 @@
|
|
650 |
{'training_loss': tensor(0.0699, device='cuda:0'), 'train_loss_ce': tensor(0.0079, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1210, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
|
651 |
{'training_loss': tensor(0.0682, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0168, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.1695, device='cuda:0')}
|
652 |
{'training_loss': tensor(0.0636, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0173, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1114, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0360, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
|
653 |
-
|
654 |
|
655 |
-
|
656 |
-
|
657 |
|
658 |
-
|
659 |
-
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
|
6 |
+
## Original result
|
7 |
+
```
|
8 |
+
IoU metric: bbox
|
9 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
|
10 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
|
11 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
|
12 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
13 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
14 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
|
15 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
|
16 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
|
17 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
|
18 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
19 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
|
20 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
|
21 |
```
|
22 |
|
23 |
+
## After training result
|
24 |
+
```
|
25 |
+
IoU metric: bbox
|
26 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.826
|
27 |
+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.867
|
28 |
+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.864
|
29 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
30 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.716
|
31 |
+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
|
32 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.841
|
33 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.844
|
34 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.844
|
35 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
|
36 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.750
|
37 |
+
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.854
|
38 |
```
|
39 |
|
40 |
+
## Config
|
41 |
+
- dataset: NIH
|
42 |
+
- original model: hustvl/yolos-tiny
|
43 |
+
- lr: 1e-05
|
44 |
+
- dropout_rate: 0.1
|
45 |
+
- weight_decay: 0.001
|
46 |
+
- max_epochs: 600
|
47 |
+
- train samples: 354
|
48 |
|
49 |
+
## Logging
|
50 |
+
### Training process
|
51 |
+
```
|
52 |
+
{'validation_loss': tensor(7.1177, device='cuda:0'), 'validation_loss_ce': tensor(2.3438, device='cuda:0'), 'validation_loss_bbox': tensor(0.5517, device='cuda:0'), 'validation_loss_giou': tensor(1.0076, device='cuda:0'), 'validation_cardinality_error': tensor(98.9375, device='cuda:0')}
|
53 |
{'training_loss': tensor(4.8380, device='cuda:0'), 'train_loss_ce': tensor(1.9076, device='cuda:0'), 'train_loss_bbox': tensor(0.2720, device='cuda:0'), 'train_loss_giou': tensor(0.7852, device='cuda:0'), 'train_cardinality_error': tensor(40.5000, device='cuda:0'), 'validation_loss': tensor(4.6572, device='cuda:0'), 'validation_loss_ce': tensor(1.9323, device='cuda:0'), 'validation_loss_bbox': tensor(0.2644, device='cuda:0'), 'validation_loss_giou': tensor(0.7016, device='cuda:0'), 'validation_cardinality_error': tensor(64.3898, device='cuda:0')}
|
54 |
{'training_loss': tensor(4.6511, device='cuda:0'), 'train_loss_ce': tensor(1.7157, device='cuda:0'), 'train_loss_bbox': tensor(0.2469, device='cuda:0'), 'train_loss_giou': tensor(0.8504, device='cuda:0'), 'train_cardinality_error': tensor(18.5000, device='cuda:0'), 'validation_loss': tensor(3.6326, device='cuda:0'), 'validation_loss_ce': tensor(1.5263, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(5.3277, device='cuda:0')}
|
55 |
{'training_loss': tensor(4.4295, device='cuda:0'), 'train_loss_ce': tensor(1.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.9268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9645, device='cuda:0'), 'validation_loss_ce': tensor(1.0482, device='cuda:0'), 'validation_loss_bbox': tensor(0.1677, device='cuda:0'), 'validation_loss_giou': tensor(0.5388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
|
|
|
650 |
{'training_loss': tensor(0.0699, device='cuda:0'), 'train_loss_ce': tensor(0.0079, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1210, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
|
651 |
{'training_loss': tensor(0.0682, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0168, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.1695, device='cuda:0')}
|
652 |
{'training_loss': tensor(0.0636, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0173, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1114, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0360, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
|
653 |
+
```
|
654 |
|
655 |
+
## Examples
|
656 |
+
{'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
|
657 |
|
658 |
+

|
659 |
+
|