npvinHnivqn commited on
Commit
189d60f
·
verified ·
1 Parent(s): 41f3148

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -50
README.md CHANGED
@@ -1,55 +1,55 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- ## Original result
7
- ```
8
- IoU metric: bbox
9
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
10
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
11
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
12
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
13
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
14
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
15
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
16
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
17
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
18
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
19
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
20
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
21
  ```
22
 
23
- ## After training result
24
- ```
25
- IoU metric: bbox
26
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.826
27
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.867
28
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.864
29
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
30
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.716
31
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
32
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.841
33
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.844
34
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.844
35
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
36
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.750
37
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.854
38
  ```
39
 
40
- ## Config
41
- - dataset: NIH
42
- - original model: hustvl/yolos-tiny
43
- - lr: 1e-05
44
- - dropout_rate: 0.1
45
- - weight_decay: 0.001
46
- - max_epochs: 600
47
- - train samples: 354
48
 
49
- ## Logging
50
- ### Training process
51
- ```
52
- {'validation_loss': tensor(7.1177, device='cuda:0'), 'validation_loss_ce': tensor(2.3438, device='cuda:0'), 'validation_loss_bbox': tensor(0.5517, device='cuda:0'), 'validation_loss_giou': tensor(1.0076, device='cuda:0'), 'validation_cardinality_error': tensor(98.9375, device='cuda:0')}
53
  {'training_loss': tensor(4.8380, device='cuda:0'), 'train_loss_ce': tensor(1.9076, device='cuda:0'), 'train_loss_bbox': tensor(0.2720, device='cuda:0'), 'train_loss_giou': tensor(0.7852, device='cuda:0'), 'train_cardinality_error': tensor(40.5000, device='cuda:0'), 'validation_loss': tensor(4.6572, device='cuda:0'), 'validation_loss_ce': tensor(1.9323, device='cuda:0'), 'validation_loss_bbox': tensor(0.2644, device='cuda:0'), 'validation_loss_giou': tensor(0.7016, device='cuda:0'), 'validation_cardinality_error': tensor(64.3898, device='cuda:0')}
54
  {'training_loss': tensor(4.6511, device='cuda:0'), 'train_loss_ce': tensor(1.7157, device='cuda:0'), 'train_loss_bbox': tensor(0.2469, device='cuda:0'), 'train_loss_giou': tensor(0.8504, device='cuda:0'), 'train_cardinality_error': tensor(18.5000, device='cuda:0'), 'validation_loss': tensor(3.6326, device='cuda:0'), 'validation_loss_ce': tensor(1.5263, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(5.3277, device='cuda:0')}
55
  {'training_loss': tensor(4.4295, device='cuda:0'), 'train_loss_ce': tensor(1.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.9268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9645, device='cuda:0'), 'validation_loss_ce': tensor(1.0482, device='cuda:0'), 'validation_loss_bbox': tensor(0.1677, device='cuda:0'), 'validation_loss_giou': tensor(0.5388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
@@ -650,10 +650,10 @@
650
  {'training_loss': tensor(0.0699, device='cuda:0'), 'train_loss_ce': tensor(0.0079, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1210, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
651
  {'training_loss': tensor(0.0682, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0168, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.1695, device='cuda:0')}
652
  {'training_loss': tensor(0.0636, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0173, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1114, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0360, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
653
- ```
654
 
655
- ## Examples
656
- {'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
657
 
658
- ![Example](./example.png)
659
-
 
1
  ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
 
6
+ ## Original result
7
+ ```
8
+ IoU metric: bbox
9
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
10
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
11
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
12
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
13
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
14
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
15
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
16
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000
17
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001
18
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
19
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
20
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.001
21
  ```
22
 
23
+ ## After training result
24
+ ```
25
+ IoU metric: bbox
26
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.826
27
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.867
28
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.864
29
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
30
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.716
31
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.844
32
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.841
33
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.844
34
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.844
35
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
36
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.750
37
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.854
38
  ```
39
 
40
+ ## Config
41
+ - dataset: NIH
42
+ - original model: hustvl/yolos-tiny
43
+ - lr: 1e-05
44
+ - dropout_rate: 0.1
45
+ - weight_decay: 0.001
46
+ - max_epochs: 600
47
+ - train samples: 354
48
 
49
+ ## Logging
50
+ ### Training process
51
+ ```
52
+ {'validation_loss': tensor(7.1177, device='cuda:0'), 'validation_loss_ce': tensor(2.3438, device='cuda:0'), 'validation_loss_bbox': tensor(0.5517, device='cuda:0'), 'validation_loss_giou': tensor(1.0076, device='cuda:0'), 'validation_cardinality_error': tensor(98.9375, device='cuda:0')}
53
  {'training_loss': tensor(4.8380, device='cuda:0'), 'train_loss_ce': tensor(1.9076, device='cuda:0'), 'train_loss_bbox': tensor(0.2720, device='cuda:0'), 'train_loss_giou': tensor(0.7852, device='cuda:0'), 'train_cardinality_error': tensor(40.5000, device='cuda:0'), 'validation_loss': tensor(4.6572, device='cuda:0'), 'validation_loss_ce': tensor(1.9323, device='cuda:0'), 'validation_loss_bbox': tensor(0.2644, device='cuda:0'), 'validation_loss_giou': tensor(0.7016, device='cuda:0'), 'validation_cardinality_error': tensor(64.3898, device='cuda:0')}
54
  {'training_loss': tensor(4.6511, device='cuda:0'), 'train_loss_ce': tensor(1.7157, device='cuda:0'), 'train_loss_bbox': tensor(0.2469, device='cuda:0'), 'train_loss_giou': tensor(0.8504, device='cuda:0'), 'train_cardinality_error': tensor(18.5000, device='cuda:0'), 'validation_loss': tensor(3.6326, device='cuda:0'), 'validation_loss_ce': tensor(1.5263, device='cuda:0'), 'validation_loss_bbox': tensor(0.1872, device='cuda:0'), 'validation_loss_giou': tensor(0.5851, device='cuda:0'), 'validation_cardinality_error': tensor(5.3277, device='cuda:0')}
55
  {'training_loss': tensor(4.4295, device='cuda:0'), 'train_loss_ce': tensor(1.1966, device='cuda:0'), 'train_loss_bbox': tensor(0.2759, device='cuda:0'), 'train_loss_giou': tensor(0.9268, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.9645, device='cuda:0'), 'validation_loss_ce': tensor(1.0482, device='cuda:0'), 'validation_loss_bbox': tensor(0.1677, device='cuda:0'), 'validation_loss_giou': tensor(0.5388, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
 
650
  {'training_loss': tensor(0.0699, device='cuda:0'), 'train_loss_ce': tensor(0.0079, device='cuda:0'), 'train_loss_bbox': tensor(0.0044, device='cuda:0'), 'train_loss_giou': tensor(0.0199, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1210, device='cuda:0'), 'validation_loss_ce': tensor(0.0077, device='cuda:0'), 'validation_loss_bbox': tensor(0.0070, device='cuda:0'), 'validation_loss_giou': tensor(0.0393, device='cuda:0'), 'validation_cardinality_error': tensor(0.2203, device='cuda:0')}
651
  {'training_loss': tensor(0.0682, device='cuda:0'), 'train_loss_ce': tensor(0.0051, device='cuda:0'), 'train_loss_bbox': tensor(0.0059, device='cuda:0'), 'train_loss_giou': tensor(0.0168, device='cuda:0'), 'train_cardinality_error': tensor(0., device='cuda:0'), 'validation_loss': tensor(0.1295, device='cuda:0'), 'validation_loss_ce': tensor(0.0075, device='cuda:0'), 'validation_loss_bbox': tensor(0.0073, device='cuda:0'), 'validation_loss_giou': tensor(0.0427, device='cuda:0'), 'validation_cardinality_error': tensor(0.1695, device='cuda:0')}
652
  {'training_loss': tensor(0.0636, device='cuda:0'), 'train_loss_ce': tensor(0.0103, device='cuda:0'), 'train_loss_bbox': tensor(0.0037, device='cuda:0'), 'train_loss_giou': tensor(0.0173, device='cuda:0'), 'train_cardinality_error': tensor(0.5000, device='cuda:0'), 'validation_loss': tensor(0.1114, device='cuda:0'), 'validation_loss_ce': tensor(0.0071, device='cuda:0'), 'validation_loss_bbox': tensor(0.0064, device='cuda:0'), 'validation_loss_giou': tensor(0.0360, device='cuda:0'), 'validation_cardinality_error': tensor(0.2006, device='cuda:0')}
653
+ ```
654
 
655
+ ## Examples
656
+ {'size': tensor([512, 512]), 'image_id': tensor([1]), 'class_labels': tensor([4]), 'boxes': tensor([[0.2622, 0.5729, 0.0847, 0.0773]]), 'area': tensor([1717.9431]), 'iscrowd': tensor([0]), 'orig_size': tensor([1024, 1024])}
657
 
658
+ ![Example](./example.png)
659
+