Translation
File size: 3,849 Bytes
323d012
cd62867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323d012
cd62867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
---
pipeline_tag: translation
language:
  - multilingual
  - en
  - am
  - ar
  - so
  - sw
  - pt
  - af
  - fr
  - zu
  - mg
  - ha
  - sn
  - arz
  - ny
  - ig
  - xh
  - yo
  - st
  - rw
  - tn
  - ti
  - ts
  - om
  - run
  - nso
  - ee
  - ln
  - tw
  - pcm
  - gaa
  - loz
  - lg
  - guw
  - bem
  - efi
  - lue
  - lua
  - toi
  - ve
  - tum
  - tll
  - iso
  - kqn
  - zne
  - umb
  - mos
  - tiv
  - lu
  - ff
  - kwy
  - bci
  - rnd
  - luo
  - wal
  - ss
  - lun
  - wo
  - nyk
  - kj
  - ki
  - fon
  - bm
  - cjk
  - din
  - dyu
  - kab
  - kam
  - kbp
  - kr
  - kmb
  - kg
  - nus
  - sg
  - taq
  - tzm
  - nqo

license: apache-2.0
---
SSA-COMET-STL, a robust, automatic metric for MTE, built based on SSA-MTE: It receives a triplet with (source sentence, translation, reference translation), and returns a score that reflects the quality of the translation.
This model is based on an improved African enhanced encoder, [afro-xlmr-large-76L](https://huggingface.co/Davlan/afro-xlmr-large-76L).

# Paper

Coming soon

# License

Apache-2.0

# Usage (SSA-COMET)

Using this model requires unbabel-comet to be installed:

```bash
pip install --upgrade pip  # ensures that pip is current 
pip install unbabel-comet
```

Then you can use it through comet CLI:

```bash
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model McGill-NLP/ssa-comet-stl
```

Or using Python:

```python
from comet import download_model, load_from_checkpoint
model_path = download_model("McGill-NLP/ssa-comet-stl")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
        "mt": "Nadal's head to head record against the Canadian is 7–2.",
        "ref": "Nadal scored seven unanswered points against Canada."
    },
    {
        "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
        "mt": "He recently lost against Raonic in the Brisbane Open.",
        "ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)
```

# Intended uses

Our model is intended to be used for **MT evaluation**. 

Given a triplet with (source sentence, translation, reference translation), it outputs a single score between 0 and 1, where 1 represents a perfect translation. 

# Languages Covered:

There are 76 languages available :
- English (eng)
- Amharic (amh)
- Arabic (ara) 
- Somali (som)
- Kiswahili (swa)
- Portuguese (por)
- Afrikaans (afr)
- French (fra)
- isiZulu (zul)
- Malagasy (mlg)
- Hausa (hau)
- chiShona (sna)
- Egyptian Arabic (arz)
- Chichewa (nya)
- Igbo (ibo)
- isiXhosa (xho)
- Yorùbá (yor)
- Sesotho (sot)
- Kinyarwanda (kin)
- Tigrinya (tir)
- Tsonga (tso)
- Oromo (orm)
- Rundi (run)
- Northern Sotho (nso)
- Ewe (ewe)
- Lingala (lin)
- Twi (twi)
- Nigerian Pidgin (pcm)
- Ga (gaa)
- Lozi (loz)
- Luganda (lug)
- Gun (guw)
- Bemba (bem)
- Efik (efi)
- Luvale (lue) 
- Luba-Lulua (lua)
- Tonga (toi)
- Tshivenḓa (ven)
- Tumbuka (tum)
- Tetela (tll)
- Isoko (iso)
- Kaonde (kqn)
- Zande (zne)
- Umbundu (umb)
- Mossi (mos)
- Tiv (tiv)
- Luba-Katanga (lub)
- Fula (fuv)
- San Salvador Kongo (kwy)
- Baoulé (bci)
- Ruund (rnd)
- Luo (luo)
- Wolaitta (wal) 
- Swazi (ssw)
- Lunda (lun)
- Wolof (wol)
- Nyaneka (nyk) 
- Kwanyama (kua)
- Kikuyu (kik)
- Fon (fon)
- Bambara (bam)
- Chokwe (cjk)
- Dinka (dik)
- Dyula (dyu)
- Kabyle (kab)
- Kamba (kam)
- Kabiyè (kbp)
- Kanuri (knc)
- Kimbundu (kmb)
- Kikongo (kon)
- Nuer (nus)
- Sango (sag)
- Tamasheq (taq)
- Tamazight (tzm)
- N'ko (nqo)

# Specifically Finetuned on:
- Amharic (amh)
- Hausa (hau)
- Igbo (ibo)
- Kikuyu (kik)
- Kinyarwanda (kin)
- Luo (luo)
- Twi (twi)
- Yoruba (yor)
- Zulu (zul)
- Ewe (Ewe)
- Lingala (lin)
- Wolof (wol)