File size: 3,849 Bytes
323d012 cd62867 323d012 cd62867 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
pipeline_tag: translation
language:
- multilingual
- en
- am
- ar
- so
- sw
- pt
- af
- fr
- zu
- mg
- ha
- sn
- arz
- ny
- ig
- xh
- yo
- st
- rw
- tn
- ti
- ts
- om
- run
- nso
- ee
- ln
- tw
- pcm
- gaa
- loz
- lg
- guw
- bem
- efi
- lue
- lua
- toi
- ve
- tum
- tll
- iso
- kqn
- zne
- umb
- mos
- tiv
- lu
- ff
- kwy
- bci
- rnd
- luo
- wal
- ss
- lun
- wo
- nyk
- kj
- ki
- fon
- bm
- cjk
- din
- dyu
- kab
- kam
- kbp
- kr
- kmb
- kg
- nus
- sg
- taq
- tzm
- nqo
license: apache-2.0
---
SSA-COMET-STL, a robust, automatic metric for MTE, built based on SSA-MTE: It receives a triplet with (source sentence, translation, reference translation), and returns a score that reflects the quality of the translation.
This model is based on an improved African enhanced encoder, [afro-xlmr-large-76L](https://huggingface.co/Davlan/afro-xlmr-large-76L).
# Paper
Coming soon
# License
Apache-2.0
# Usage (SSA-COMET)
Using this model requires unbabel-comet to be installed:
```bash
pip install --upgrade pip # ensures that pip is current
pip install unbabel-comet
```
Then you can use it through comet CLI:
```bash
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model McGill-NLP/ssa-comet-stl
```
Or using Python:
```python
from comet import download_model, load_from_checkpoint
model_path = download_model("McGill-NLP/ssa-comet-stl")
model = load_from_checkpoint(model_path)
data = [
{
"src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
"mt": "Nadal's head to head record against the Canadian is 7–2.",
"ref": "Nadal scored seven unanswered points against Canada."
},
{
"src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
"mt": "He recently lost against Raonic in the Brisbane Open.",
"ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
}
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)
```
# Intended uses
Our model is intended to be used for **MT evaluation**.
Given a triplet with (source sentence, translation, reference translation), it outputs a single score between 0 and 1, where 1 represents a perfect translation.
# Languages Covered:
There are 76 languages available :
- English (eng)
- Amharic (amh)
- Arabic (ara)
- Somali (som)
- Kiswahili (swa)
- Portuguese (por)
- Afrikaans (afr)
- French (fra)
- isiZulu (zul)
- Malagasy (mlg)
- Hausa (hau)
- chiShona (sna)
- Egyptian Arabic (arz)
- Chichewa (nya)
- Igbo (ibo)
- isiXhosa (xho)
- Yorùbá (yor)
- Sesotho (sot)
- Kinyarwanda (kin)
- Tigrinya (tir)
- Tsonga (tso)
- Oromo (orm)
- Rundi (run)
- Northern Sotho (nso)
- Ewe (ewe)
- Lingala (lin)
- Twi (twi)
- Nigerian Pidgin (pcm)
- Ga (gaa)
- Lozi (loz)
- Luganda (lug)
- Gun (guw)
- Bemba (bem)
- Efik (efi)
- Luvale (lue)
- Luba-Lulua (lua)
- Tonga (toi)
- Tshivenḓa (ven)
- Tumbuka (tum)
- Tetela (tll)
- Isoko (iso)
- Kaonde (kqn)
- Zande (zne)
- Umbundu (umb)
- Mossi (mos)
- Tiv (tiv)
- Luba-Katanga (lub)
- Fula (fuv)
- San Salvador Kongo (kwy)
- Baoulé (bci)
- Ruund (rnd)
- Luo (luo)
- Wolaitta (wal)
- Swazi (ssw)
- Lunda (lun)
- Wolof (wol)
- Nyaneka (nyk)
- Kwanyama (kua)
- Kikuyu (kik)
- Fon (fon)
- Bambara (bam)
- Chokwe (cjk)
- Dinka (dik)
- Dyula (dyu)
- Kabyle (kab)
- Kamba (kam)
- Kabiyè (kbp)
- Kanuri (knc)
- Kimbundu (kmb)
- Kikongo (kon)
- Nuer (nus)
- Sango (sag)
- Tamasheq (taq)
- Tamazight (tzm)
- N'ko (nqo)
# Specifically Finetuned on:
- Amharic (amh)
- Hausa (hau)
- Igbo (ibo)
- Kikuyu (kik)
- Kinyarwanda (kin)
- Luo (luo)
- Twi (twi)
- Yoruba (yor)
- Zulu (zul)
- Ewe (Ewe)
- Lingala (lin)
- Wolof (wol) |