MarkusHenriksson13 commited on
Commit
66ae1c9
·
verified ·
1 Parent(s): fb0fd89

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -19
README.md CHANGED
@@ -37,12 +37,34 @@ The preprocessing steps included:
37
  Additionally, for fine-tuning the model for your own data, the preprocessing step involves converting new financial headlines into embeddings and feeding them into the RandomForest model.
38
 
39
  ### Model Evaluation
40
- The model has been evaluated using metrics such as:
41
- - **Accuracy**: The percentage of correctly classified headlines.
42
- - **F1-score**: The harmonic mean of precision and recall, providing a better measure of model performance when dealing with imbalanced data.
43
- - **Confusion Matrix**: Helps identify how well the model distinguishes between the different sentiment categories (positive, neutral, and negative).
44
 
45
- On the test data, the model achieves an **accuracy of X%**, with an **F1-score of X%**. The confusion matrix shows that the model performs well, with a high number of true positives for positive, neutral, and negative sentiments.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ### Usage
48
 
@@ -50,17 +72,3 @@ To use the model, first install the necessary dependencies:
50
 
51
  ```bash
52
  pip install sentence-transformers scikit-learn
53
-
54
- ```
55
-
56
- license: apache-2.0
57
- datasets:
58
- - NickyNicky/Finance_sentiment_and_topic_classification_En
59
- language:
60
- - en
61
- metrics:
62
- - accuracy
63
- base_model:
64
- - sentence-transformers/all-MiniLM-L6-v2
65
- pipeline_tag: text-classification
66
- ---
 
37
  Additionally, for fine-tuning the model for your own data, the preprocessing step involves converting new financial headlines into embeddings and feeding them into the RandomForest model.
38
 
39
  ### Model Evaluation
 
 
 
 
40
 
41
+
42
+ On the test data, the model achieves an **accuracy of 61%**, with an **F1-score of 0.61**. Not optimal, but acceptable in terms of the simplicity and few data the model is trained on.
43
+
44
+ #### Hyperparameters:
45
+ - **Number of Estimators (n_estimators)**: 200
46
+ - **Max Depth (max_depth)**: 20
47
+ - **Min Samples Split (min_samples_split)**: 5
48
+ - **Min Samples Leaf (min_samples_leaf)**: 1
49
+ - **Random State (random_state)**: 42
50
+ - **Max Features (max_features)**: 'sqrt' (default value for RandomForest)
51
+
52
+ #### Classification Report:
53
+ - **Precision**:
54
+ - Class 0: 0.66
55
+ - Class 1: 0.62
56
+ - Class 2: 0.55
57
+ - **Recall**:
58
+ - Class 0: 0.52
59
+ - Class 1: 0.80
60
+ - Class 2: 0.52
61
+ - **F1-Score**:
62
+ - Class 0: 0.58
63
+ - Class 1: 0.70
64
+ - Class 2: 0.54
65
+ - **Overall Accuracy**: 0.61
66
+ - **Macro Average**: 0.61 (Precision, Recall, F1-Score)
67
+ - **Weighted Average**: 0.61 (Precision, Recall, F1-Score)
68
 
69
  ### Usage
70
 
 
72
 
73
  ```bash
74
  pip install sentence-transformers scikit-learn