File size: 7,422 Bytes
d748d4c 9035bec d748d4c 9035bec d748d4c c712fec b37daec c712fec b37daec c712fec b37daec c712fec 4b43e52 c712fec d748d4c 9035bec d748d4c 9035bec d748d4c 73e5f3d d748d4c 73e5f3d d748d4c 9035bec d748d4c 9035bec d748d4c 9035bec d748d4c a42559b d748d4c a42559b d748d4c 9035bec d748d4c 9035bec d748d4c 4b43e52 d748d4c 4b43e52 d748d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
license: cc-by-nc-sa-4.0
datasets:
- lmms-lab/LLaVA-Video-178K
language:
- en
metrics:
- accuracy
base_model:
- lmms-lab/LLaVA-Video-7B-Qwen2
pipeline_tag: video-text-to-text
library_name: transformers
tags:
- Action
- Video
- MQA
- multimodal
- VLM
- LLaVAction
- MLLMs
model-index:
- name: LLaVAction-7B
results:
- task:
type: multimodal
dataset:
name: EgoSchema
type: egoschema
metrics:
- type: accuracy
value: 59
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: MVBench
type: mvbench
metrics:
- type: accuracy
value: 61.1
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: NextQA
type: nextqa
metrics:
- type: accuracy
value: 82.8
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: PercepTest
type: percepTest
metrics:
- type: accuracy
value: 70.2
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: LongVideoBench
type: longvideobench
metrics:
- type: accuracy
value: 58.6
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME
type: videomme
metrics:
- type: accuracy
value: 63.9
name: accuracy
verified: true
- task:
type: multimodal
dataset:
name: VideoMME (w-subs)
type: videomme
metrics:
- type: accuracy
value: 71.4
name: accuracy
verified: true
---
# LLaVAction-7B
<div align="center">
<h2>LLaVAction: evaluating and training multi-modal large language models for action recognition
</h2>
[Shaokai Ye](https://yeshaokai.github.io/)<sup>1**</sup>
[Haozhe Qi](https://people.epfl.ch/haozhe.qi)<sup>1**</sup>
[Alexander Mathis](https://mathislab.org/)<sup>1</sup><sup>†</sup>
[Mackenzie Weygandt Mathis](https://www.mackenziemathislab.org/mackenziemathis)<sup>1</sup><sup>†</sup><sup>‡</sup>
<sup>1</sup> EPFL
<sup>**</sup> First authors <sup>†</sup> Senior Authors <sup>‡</sup> Corresponding Author
\[[arXiv Paper](arxiv.org/abs/2503.18712)\] \[[Project Page](https://mmathislab.github.io/llavaction/)\] \[[Github Repo](https://github.com/AdaptiveMotorControlLab/LLaVAction)\]
</div>
## Model Summary
The LLaVAction-7B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
This model supports at most 64 frames.
- **Project Page**: [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
- **Repository**: [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
- **Languages**: English
-
## Useage
### Intended use
The model was trained on EPIC-KITCHENS-100-MQA [dataset release pending] and [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K). It has improved capability on understanding human egocentric actions from videos.
### Generation
We provide the simple generation process for using our model. For more details, you could refer to our [Github](https://github.com/AdaptiveMotorControlLab/LLaVAction).
```python
!pip install llavaction
from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
#Your video (it assumes an egocentric view point)
video_path = "XXXX"
#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-7B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```
## Training
See details in Ye et al. 2025: arxiv.org/abs/2503.18712
### Model
- **Architecture**: SO400M + Qwen2
- **Initialized Model**: lmms-lab/LLaVA-Video-7B-Qwen2
- **Data**: A mixture of LLaVA-178K and EPIC-KITCHENS-100-MQA, 2 epochs, full model
- **Precision**: bfloat16
### Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training)
Orchestration: HuggingFace Trainer
Neural networks: PyTorch
## Citation
arXiv: arxiv.org/abs/2503.18712
```bibtex
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}
``` |