File size: 7,422 Bytes
d748d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9035bec
 
 
d748d4c
9035bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d748d4c
 
 
 
c712fec
 
 
 
b37daec
 
c712fec
b37daec
 
c712fec
 
 
b37daec
c712fec
4b43e52
c712fec
 
 
d748d4c
9035bec
d748d4c
 
 
 
 
 
 
 
9035bec
d748d4c
 
73e5f3d
d748d4c
 
 
73e5f3d
d748d4c
 
 
9035bec
d748d4c
 
 
 
 
 
 
 
 
 
 
 
 
9035bec
 
 
 
 
 
 
 
d748d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9035bec
d748d4c
 
 
 
 
 
 
 
a42559b
d748d4c
 
a42559b
d748d4c
9035bec
d748d4c
 
 
 
 
9035bec
d748d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b43e52
d748d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b43e52
 
d748d4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
license: cc-by-nc-sa-4.0
datasets:
- lmms-lab/LLaVA-Video-178K
language:
- en
metrics:
- accuracy
base_model:
- lmms-lab/LLaVA-Video-7B-Qwen2
pipeline_tag: video-text-to-text
library_name: transformers
tags:
- Action
- Video
- MQA
- multimodal
- VLM
- LLaVAction
- MLLMs
model-index:
- name: LLaVAction-7B
  results:
  - task:
      type: multimodal
    dataset:
      name: EgoSchema
      type: egoschema
    metrics:
    - type: accuracy
      value: 59
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MVBench
      type: mvbench
    metrics:
    - type: accuracy
      value: 61.1
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: NextQA
      type: nextqa
    metrics:
    - type: accuracy
      value: 82.8
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: PercepTest
      type: percepTest
    metrics:
    - type: accuracy
      value: 70.2
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LongVideoBench
      type: longvideobench
    metrics:
    - type: accuracy
      value: 58.6
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMME
      type: videomme
    metrics:
    - type: accuracy
      value: 63.9
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMME (w-subs)
      type: videomme
    metrics:
    - type: accuracy
      value: 71.4
      name: accuracy
      verified: true
---

# LLaVAction-7B

<div align="center">
<h2>LLaVAction: evaluating and training multi-modal large language models for action recognition
</h2>

[Shaokai Ye](https://yeshaokai.github.io/)<sup>1**</sup>&nbsp; 
[Haozhe Qi](https://people.epfl.ch/haozhe.qi)<sup>1**</sup>&nbsp;

[Alexander Mathis](https://mathislab.org/)<sup>1</sup><sup></sup>&nbsp;
[Mackenzie Weygandt Mathis](https://www.mackenziemathislab.org/mackenziemathis)<sup>1</sup><sup></sup><sup></sup>&nbsp;

<sup>1</sup> EPFL

<sup>**</sup> First authors  <sup></sup> Senior Authors  <sup></sup> Corresponding Author

\[[arXiv Paper](arxiv.org/abs/2503.18712)\] &nbsp; \[[Project Page](https://mmathislab.github.io/llavaction/)\] &nbsp; \[[Github Repo](https://github.com/AdaptiveMotorControlLab/LLaVAction)\] &nbsp; 

</div>

## Model Summary
The LLaVAction-7B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
This model supports at most 64 frames.

- **Project Page**:  [https://mmathislab.github.io/llavaction/](https://mmathislab.github.io/llavaction/)
- **Paper**: For more details, please check our [paper](https://arxiv.org/abs/tbd)
- **Repository**:  [https://github.com/AdaptiveMotorControlLab/LLaVAction](https://github.com/AdaptiveMotorControlLab/LLaVAction)
- **Point of Contact**: [Mackenzie Mathis](https://people.epfl.ch/mackenzie.mathis)
- **Languages**: English
- 
## Useage

### Intended use
The model was trained on EPIC-KITCHENS-100-MQA [dataset release pending] and [LLaVA-Video-178K](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K). It has improved capability on understanding human egocentric actions from videos.


### Generation
We provide the simple generation process for using our model. For more details, you could refer to our [Github](https://github.com/AdaptiveMotorControlLab/LLaVAction).

```python
!pip install llavaction

from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")

#Your video (it assumes an egocentric view point)
video_path = "XXXX"

#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."

def load_video(video_path, max_frames_num,fps=1,force_sample=False):
    if max_frames_num == 0:
        return np.zeros((1, 336, 336, 3))
    vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
    total_frame_num = len(vr)
    video_time = total_frame_num / vr.get_avg_fps()
    fps = round(vr.get_avg_fps()/fps)
    frame_idx = [i for i in range(0, len(vr), fps)]
    if len(frame_idx) > max_frames_num or force_sample:
        sample_fps = max_frames_num
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        frame_time = [i/vr.get_avg_fps() for i in frame_idx]
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    # import pdb;pdb.set_trace()
    return spare_frames,frame_time,video_time

pretrained = "MLAdaptiveIntelligence/LLaVAction-7B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)  # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"

conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)

cont = model.generate(
    input_ids,
    images=video,
    modalities= ["video"],
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
```


## Training

See details in Ye et al. 2025: arxiv.org/abs/2503.18712

### Model
- **Architecture**: SO400M + Qwen2
- **Initialized Model**: lmms-lab/LLaVA-Video-7B-Qwen2
- **Data**: A mixture of LLaVA-178K and EPIC-KITCHENS-100-MQA, 2 epochs, full model
- **Precision**: bfloat16


### Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training)
Orchestration: HuggingFace Trainer
Neural networks:  PyTorch

## Citation

arXiv: arxiv.org/abs/2503.18712

```bibtex
@article{YeQi2025llavaction,
  title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
  author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
  journal={arXiv preprint},
  year={2025}
}
```