--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:25310 - loss:CosineSimilarityLoss base_model: Snowflake/snowflake-arctic-embed-s widget: - source_sentence: encryption algorithms for mobile transactions sentences: - equipaggiamento per sport acquatici - finanziamenti a lungo termine per privati - encryption algorithms for mobile banking - source_sentence: tecnologie di liofilizzazione per frutta e verdura sentences: - serbatoi di fermentazione in acciaio inox per cantine - impianti di liofilizzazione per frutta e verdura - medical cannulas - source_sentence: servizi di installazione di cavi sottomarini sentences: - servizi di installazione di cavi sottomarini - custom spinal fusion implants - soluzioni disinfettanti per il settore sanitario - source_sentence: antifouling paint for yachts sentences: - sistemi di ventilazione con controllo umidità integrato - robot per la movimentazione interna - vernici per automobili - source_sentence: materiali isolanti per sistemi radianti a soffitto sentences: - Produzione di contenuti per social media nel settore moda. - privacy and data protection training - materiali isolanti per edifici pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - cosine_accuracy model-index: - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-s results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: custom dataset type: custom_dataset metrics: - type: pearson_cosine value: 0.7037099269944034 name: Pearson Cosine - type: spearman_cosine value: 0.7286991662955787 name: Spearman Cosine - task: type: triplet name: Triplet dataset: name: all nli dataset type: all_nli_dataset metrics: - type: cosine_accuracy value: 0.8162614107131958 name: Cosine Accuracy - task: type: semantic-similarity name: Semantic Similarity dataset: name: stsbenchmark type: stsbenchmark metrics: - type: pearson_cosine value: 0.7477235986007352 name: Pearson Cosine - type: spearman_cosine value: 0.7431995961099886 name: Spearman Cosine --- # SentenceTransformer based on Snowflake/snowflake-arctic-embed-s This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_145351_finalmodel") # Run inference sentences = [ 'materiali isolanti per sistemi radianti a soffitto', 'materiali isolanti per edifici', 'privacy and data protection training', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `custom_dataset` and `stsbenchmark` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | custom_dataset | stsbenchmark | |:--------------------|:---------------|:-------------| | pearson_cosine | 0.7037 | 0.7477 | | **spearman_cosine** | **0.7287** | **0.7432** | #### Triplet * Dataset: `all_nli_dataset` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:--------------------|:-----------| | **cosine_accuracy** | **0.8163** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 25,310 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:---------------------------------------------------------------------------------|:--------------------------------------------------------------------|:-----------------| | ottimizzazione dei tempi di produzione per capi sartoriali di lusso | strumenti per l'ottimizzazione dei tempi di produzione | 0.6 | | software di programmazione robotica per lucidatura | software gestionale generico | 0.4 | | rete di sensori per l'analisi del suolo in tempo reale | software per gestione aziendale | 0.0 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 3,164 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------|:------------------------------------------------------------------------------|:-----------------| | ispezioni regolari per camion aziendali | ispezioni regolari per camion di consegna | 1.0 | | blister packaging machines GMP compliant | food packaging machines | 0.4 | | EMI shielding paints for electronics | Vernici per schermatura elettromagnetica dispositivi elettronici | 0.8 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine | |:------:|:----:|:-------------:|:---------------:|:------------------------------:|:-------------------------------:|:----------------------------:| | -1 | -1 | - | - | 0.7287 | 0.8163 | 0.7432 | | 0.1264 | 200 | 0.0671 | 0.0434 | - | - | - | | 0.2528 | 400 | 0.0401 | 0.0344 | - | - | - | | 0.3793 | 600 | 0.0342 | 0.0307 | - | - | - | | 0.5057 | 800 | 0.0347 | 0.0327 | - | - | - | | 0.6321 | 1000 | 0.0322 | 0.0287 | - | - | - | | 0.7585 | 1200 | 0.032 | 0.0279 | - | - | - | | 0.8850 | 1400 | 0.0307 | 0.0282 | - | - | - | | 1.0114 | 1600 | 0.0267 | 0.0279 | - | - | - | | 1.1378 | 1800 | 0.0244 | 0.0266 | - | - | - | | 1.2642 | 2000 | 0.0227 | 0.0282 | - | - | - | | 1.3906 | 2200 | 0.0237 | 0.0249 | - | - | - | | 1.5171 | 2400 | 0.0222 | 0.0273 | - | - | - | | 1.6435 | 2600 | 0.0235 | 0.0246 | - | - | - | | 1.7699 | 2800 | 0.0228 | 0.0247 | - | - | - | | 1.8963 | 3000 | 0.0225 | 0.0241 | - | - | - | | 2.0228 | 3200 | 0.0213 | 0.0244 | - | - | - | | 2.1492 | 3400 | 0.0169 | 0.0234 | - | - | - | | 2.2756 | 3600 | 0.0178 | 0.0257 | - | - | - | | 2.4020 | 3800 | 0.018 | 0.0236 | - | - | - | | 2.5284 | 4000 | 0.0177 | 0.0230 | - | - | - | | 2.6549 | 4200 | 0.0176 | 0.0234 | - | - | - | | 2.7813 | 4400 | 0.0182 | 0.0229 | - | - | - | | 2.9077 | 4600 | 0.0173 | 0.0221 | - | - | - | | 3.0341 | 4800 | 0.0157 | 0.0232 | - | - | - | | 3.1606 | 5000 | 0.0139 | 0.0225 | - | - | - | | 3.2870 | 5200 | 0.0137 | 0.0222 | - | - | - | | 3.4134 | 5400 | 0.0142 | 0.0224 | - | - | - | | 3.5398 | 5600 | 0.0143 | 0.0224 | - | - | - | | 3.6662 | 5800 | 0.0135 | 0.0225 | - | - | - | | 3.7927 | 6000 | 0.0143 | 0.0223 | - | - | - | | 3.9191 | 6200 | 0.0143 | 0.0234 | - | - | - | | 4.0455 | 6400 | 0.0128 | 0.0219 | - | - | - | | 4.1719 | 6600 | 0.0117 | 0.0222 | - | - | - | | 4.2984 | 6800 | 0.0113 | 0.0217 | - | - | - | | 4.4248 | 7000 | 0.0115 | 0.0220 | - | - | - | | 4.5512 | 7200 | 0.012 | 0.0217 | - | - | - | | 4.6776 | 7400 | 0.0113 | 0.0221 | - | - | - | | 4.8040 | 7600 | 0.012 | 0.0217 | - | - | - | | 4.9305 | 7800 | 0.0105 | 0.0217 | - | - | - | ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```