---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25310
- loss:CosineSimilarityLoss
base_model: Snowflake/snowflake-arctic-embed-s
widget:
- source_sentence: encryption algorithms for mobile transactions
sentences:
- equipaggiamento per sport acquatici
- finanziamenti a lungo termine per privati
- encryption algorithms for mobile banking
- source_sentence: tecnologie di liofilizzazione per frutta e verdura
sentences:
- serbatoi di fermentazione in acciaio inox per cantine
- impianti di liofilizzazione per frutta e verdura
- medical cannulas
- source_sentence: servizi di installazione di cavi sottomarini
sentences:
- servizi di installazione di cavi sottomarini
- custom spinal fusion implants
- soluzioni disinfettanti per il settore sanitario
- source_sentence: antifouling paint for yachts
sentences:
- sistemi di ventilazione con controllo umidità integrato
- robot per la movimentazione interna
- vernici per automobili
- source_sentence: materiali isolanti per sistemi radianti a soffitto
sentences:
- Produzione di contenuti per social media nel settore moda.
- privacy and data protection training
- materiali isolanti per edifici
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: custom dataset
type: custom_dataset
metrics:
- type: pearson_cosine
value: 0.7037099269944034
name: Pearson Cosine
- type: spearman_cosine
value: 0.7286991662955787
name: Spearman Cosine
- task:
type: triplet
name: Triplet
dataset:
name: all nli dataset
type: all_nli_dataset
metrics:
- type: cosine_accuracy
value: 0.8162614107131958
name: Cosine Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsbenchmark
type: stsbenchmark
metrics:
- type: pearson_cosine
value: 0.7477235986007352
name: Pearson Cosine
- type: spearman_cosine
value: 0.7431995961099886
name: Spearman Cosine
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_145351_finalmodel")
# Run inference
sentences = [
'materiali isolanti per sistemi radianti a soffitto',
'materiali isolanti per edifici',
'privacy and data protection training',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Datasets: `custom_dataset` and `stsbenchmark`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | custom_dataset | stsbenchmark |
|:--------------------|:---------------|:-------------|
| pearson_cosine | 0.7037 | 0.7477 |
| **spearman_cosine** | **0.7287** | **0.7432** |
#### Triplet
* Dataset: `all_nli_dataset`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.8163** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 25,310 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
ottimizzazione dei tempi di produzione per capi sartoriali di lusso
| strumenti per l'ottimizzazione dei tempi di produzione
| 0.6
|
| software di programmazione robotica per lucidatura
| software gestionale generico
| 0.4
|
| rete di sensori per l'analisi del suolo in tempo reale
| software per gestione aziendale
| 0.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 3,164 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | ispezioni regolari per camion aziendali
| ispezioni regolari per camion di consegna
| 1.0
|
| blister packaging machines GMP compliant
| food packaging machines
| 0.4
|
| EMI shielding paints for electronics
| Vernici per schermatura elettromagnetica dispositivi elettronici
| 0.8
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters