LucaZilli commited on
Commit
44eb878
·
verified ·
1 Parent(s): cb6dafc

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:25310
8
+ - loss:CosineSimilarityLoss
9
+ base_model: Snowflake/snowflake-arctic-embed-s
10
+ widget:
11
+ - source_sentence: encryption algorithms for mobile transactions
12
+ sentences:
13
+ - equipaggiamento per sport acquatici
14
+ - finanziamenti a lungo termine per privati
15
+ - encryption algorithms for mobile banking
16
+ - source_sentence: tecnologie di liofilizzazione per frutta e verdura
17
+ sentences:
18
+ - serbatoi di fermentazione in acciaio inox per cantine
19
+ - impianti di liofilizzazione per frutta e verdura
20
+ - medical cannulas
21
+ - source_sentence: servizi di installazione di cavi sottomarini
22
+ sentences:
23
+ - servizi di installazione di cavi sottomarini
24
+ - custom spinal fusion implants
25
+ - soluzioni disinfettanti per il settore sanitario
26
+ - source_sentence: antifouling paint for yachts
27
+ sentences:
28
+ - sistemi di ventilazione con controllo umidità integrato
29
+ - robot per la movimentazione interna
30
+ - vernici per automobili
31
+ - source_sentence: materiali isolanti per sistemi radianti a soffitto
32
+ sentences:
33
+ - Produzione di contenuti per social media nel settore moda.
34
+ - privacy and data protection training
35
+ - materiali isolanti per edifici
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - pearson_cosine
40
+ - spearman_cosine
41
+ - cosine_accuracy
42
+ model-index:
43
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
44
+ results:
45
+ - task:
46
+ type: semantic-similarity
47
+ name: Semantic Similarity
48
+ dataset:
49
+ name: custom dataset
50
+ type: custom_dataset
51
+ metrics:
52
+ - type: pearson_cosine
53
+ value: 0.7037099269944034
54
+ name: Pearson Cosine
55
+ - type: spearman_cosine
56
+ value: 0.7286991662955787
57
+ name: Spearman Cosine
58
+ - task:
59
+ type: triplet
60
+ name: Triplet
61
+ dataset:
62
+ name: all nli dataset
63
+ type: all_nli_dataset
64
+ metrics:
65
+ - type: cosine_accuracy
66
+ value: 0.8162614107131958
67
+ name: Cosine Accuracy
68
+ - task:
69
+ type: semantic-similarity
70
+ name: Semantic Similarity
71
+ dataset:
72
+ name: stsbenchmark
73
+ type: stsbenchmark
74
+ metrics:
75
+ - type: pearson_cosine
76
+ value: 0.7477235986007352
77
+ name: Pearson Cosine
78
+ - type: spearman_cosine
79
+ value: 0.7431995961099886
80
+ name: Spearman Cosine
81
+ ---
82
+
83
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
84
+
85
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
86
+
87
+ ## Model Details
88
+
89
+ ### Model Description
90
+ - **Model Type:** Sentence Transformer
91
+ - **Base model:** [Snowflake/snowflake-arctic-embed-s](https://huggingface.co/Snowflake/snowflake-arctic-embed-s) <!-- at revision e596f507467533e48a2e17c007f0e1dacc837b33 -->
92
+ - **Maximum Sequence Length:** 512 tokens
93
+ - **Output Dimensionality:** 384 dimensions
94
+ - **Similarity Function:** Cosine Similarity
95
+ <!-- - **Training Dataset:** Unknown -->
96
+ <!-- - **Language:** Unknown -->
97
+ <!-- - **License:** Unknown -->
98
+
99
+ ### Model Sources
100
+
101
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
102
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
103
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
104
+
105
+ ### Full Model Architecture
106
+
107
+ ```
108
+ SentenceTransformer(
109
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
110
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
111
+ (2): Normalize()
112
+ )
113
+ ```
114
+
115
+ ## Usage
116
+
117
+ ### Direct Usage (Sentence Transformers)
118
+
119
+ First install the Sentence Transformers library:
120
+
121
+ ```bash
122
+ pip install -U sentence-transformers
123
+ ```
124
+
125
+ Then you can load this model and run inference.
126
+ ```python
127
+ from sentence_transformers import SentenceTransformer
128
+
129
+ # Download from the 🤗 Hub
130
+ model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_145351_finalmodel")
131
+ # Run inference
132
+ sentences = [
133
+ 'materiali isolanti per sistemi radianti a soffitto',
134
+ 'materiali isolanti per edifici',
135
+ 'privacy and data protection training',
136
+ ]
137
+ embeddings = model.encode(sentences)
138
+ print(embeddings.shape)
139
+ # [3, 384]
140
+
141
+ # Get the similarity scores for the embeddings
142
+ similarities = model.similarity(embeddings, embeddings)
143
+ print(similarities.shape)
144
+ # [3, 3]
145
+ ```
146
+
147
+ <!--
148
+ ### Direct Usage (Transformers)
149
+
150
+ <details><summary>Click to see the direct usage in Transformers</summary>
151
+
152
+ </details>
153
+ -->
154
+
155
+ <!--
156
+ ### Downstream Usage (Sentence Transformers)
157
+
158
+ You can finetune this model on your own dataset.
159
+
160
+ <details><summary>Click to expand</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Out-of-Scope Use
167
+
168
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
169
+ -->
170
+
171
+ ## Evaluation
172
+
173
+ ### Metrics
174
+
175
+ #### Semantic Similarity
176
+
177
+ * Datasets: `custom_dataset` and `stsbenchmark`
178
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
179
+
180
+ | Metric | custom_dataset | stsbenchmark |
181
+ |:--------------------|:---------------|:-------------|
182
+ | pearson_cosine | 0.7037 | 0.7477 |
183
+ | **spearman_cosine** | **0.7287** | **0.7432** |
184
+
185
+ #### Triplet
186
+
187
+ * Dataset: `all_nli_dataset`
188
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:-----------|
192
+ | **cosine_accuracy** | **0.8163** |
193
+
194
+ <!--
195
+ ## Bias, Risks and Limitations
196
+
197
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
198
+ -->
199
+
200
+ <!--
201
+ ### Recommendations
202
+
203
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
204
+ -->
205
+
206
+ ## Training Details
207
+
208
+ ### Training Dataset
209
+
210
+ #### Unnamed Dataset
211
+
212
+ * Size: 25,310 training samples
213
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
214
+ * Approximate statistics based on the first 1000 samples:
215
+ | | sentence1 | sentence2 | score |
216
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
217
+ | type | string | string | float |
218
+ | details | <ul><li>min: 4 tokens</li><li>mean: 13.32 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.06 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
219
+ * Samples:
220
+ | sentence1 | sentence2 | score |
221
+ |:---------------------------------------------------------------------------------|:--------------------------------------------------------------------|:-----------------|
222
+ | <code>ottimizzazione dei tempi di produzione per capi sartoriali di lusso</code> | <code>strumenti per l'ottimizzazione dei tempi di produzione</code> | <code>0.6</code> |
223
+ | <code>software di programmazione robotica per lucidatura</code> | <code>software gestionale generico</code> | <code>0.4</code> |
224
+ | <code>rete di sensori per l'analisi del suolo in tempo reale</code> | <code>software per gestione aziendale</code> | <code>0.0</code> |
225
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
226
+ ```json
227
+ {
228
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
229
+ }
230
+ ```
231
+
232
+ ### Evaluation Dataset
233
+
234
+ #### Unnamed Dataset
235
+
236
+ * Size: 3,164 evaluation samples
237
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
238
+ * Approximate statistics based on the first 1000 samples:
239
+ | | sentence1 | sentence2 | score |
240
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
241
+ | type | string | string | float |
242
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.61 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.39 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
243
+ * Samples:
244
+ | sentence1 | sentence2 | score |
245
+ |:------------------------------------------------------|:------------------------------------------------------------------------------|:-----------------|
246
+ | <code>ispezioni regolari per camion aziendali</code> | <code>ispezioni regolari per camion di consegna</code> | <code>1.0</code> |
247
+ | <code>blister packaging machines GMP compliant</code> | <code>food packaging machines</code> | <code>0.4</code> |
248
+ | <code>EMI shielding paints for electronics</code> | <code>Vernici per schermatura elettromagnetica dispositivi elettronici</code> | <code>0.8</code> |
249
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
250
+ ```json
251
+ {
252
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
253
+ }
254
+ ```
255
+
256
+ ### Training Hyperparameters
257
+ #### Non-Default Hyperparameters
258
+
259
+ - `eval_strategy`: steps
260
+ - `per_device_train_batch_size`: 16
261
+ - `per_device_eval_batch_size`: 16
262
+ - `num_train_epochs`: 5
263
+ - `warmup_ratio`: 0.1
264
+ - `fp16`: True
265
+ - `batch_sampler`: no_duplicates
266
+
267
+ #### All Hyperparameters
268
+ <details><summary>Click to expand</summary>
269
+
270
+ - `overwrite_output_dir`: False
271
+ - `do_predict`: False
272
+ - `eval_strategy`: steps
273
+ - `prediction_loss_only`: True
274
+ - `per_device_train_batch_size`: 16
275
+ - `per_device_eval_batch_size`: 16
276
+ - `per_gpu_train_batch_size`: None
277
+ - `per_gpu_eval_batch_size`: None
278
+ - `gradient_accumulation_steps`: 1
279
+ - `eval_accumulation_steps`: None
280
+ - `torch_empty_cache_steps`: None
281
+ - `learning_rate`: 5e-05
282
+ - `weight_decay`: 0.0
283
+ - `adam_beta1`: 0.9
284
+ - `adam_beta2`: 0.999
285
+ - `adam_epsilon`: 1e-08
286
+ - `max_grad_norm`: 1.0
287
+ - `num_train_epochs`: 5
288
+ - `max_steps`: -1
289
+ - `lr_scheduler_type`: linear
290
+ - `lr_scheduler_kwargs`: {}
291
+ - `warmup_ratio`: 0.1
292
+ - `warmup_steps`: 0
293
+ - `log_level`: passive
294
+ - `log_level_replica`: warning
295
+ - `log_on_each_node`: True
296
+ - `logging_nan_inf_filter`: True
297
+ - `save_safetensors`: True
298
+ - `save_on_each_node`: False
299
+ - `save_only_model`: False
300
+ - `restore_callback_states_from_checkpoint`: False
301
+ - `no_cuda`: False
302
+ - `use_cpu`: False
303
+ - `use_mps_device`: False
304
+ - `seed`: 42
305
+ - `data_seed`: None
306
+ - `jit_mode_eval`: False
307
+ - `use_ipex`: False
308
+ - `bf16`: False
309
+ - `fp16`: True
310
+ - `fp16_opt_level`: O1
311
+ - `half_precision_backend`: auto
312
+ - `bf16_full_eval`: False
313
+ - `fp16_full_eval`: False
314
+ - `tf32`: None
315
+ - `local_rank`: 0
316
+ - `ddp_backend`: None
317
+ - `tpu_num_cores`: None
318
+ - `tpu_metrics_debug`: False
319
+ - `debug`: []
320
+ - `dataloader_drop_last`: False
321
+ - `dataloader_num_workers`: 0
322
+ - `dataloader_prefetch_factor`: None
323
+ - `past_index`: -1
324
+ - `disable_tqdm`: False
325
+ - `remove_unused_columns`: True
326
+ - `label_names`: None
327
+ - `load_best_model_at_end`: False
328
+ - `ignore_data_skip`: False
329
+ - `fsdp`: []
330
+ - `fsdp_min_num_params`: 0
331
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
332
+ - `fsdp_transformer_layer_cls_to_wrap`: None
333
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
334
+ - `deepspeed`: None
335
+ - `label_smoothing_factor`: 0.0
336
+ - `optim`: adamw_torch
337
+ - `optim_args`: None
338
+ - `adafactor`: False
339
+ - `group_by_length`: False
340
+ - `length_column_name`: length
341
+ - `ddp_find_unused_parameters`: None
342
+ - `ddp_bucket_cap_mb`: None
343
+ - `ddp_broadcast_buffers`: False
344
+ - `dataloader_pin_memory`: True
345
+ - `dataloader_persistent_workers`: False
346
+ - `skip_memory_metrics`: True
347
+ - `use_legacy_prediction_loop`: False
348
+ - `push_to_hub`: False
349
+ - `resume_from_checkpoint`: None
350
+ - `hub_model_id`: None
351
+ - `hub_strategy`: every_save
352
+ - `hub_private_repo`: None
353
+ - `hub_always_push`: False
354
+ - `gradient_checkpointing`: False
355
+ - `gradient_checkpointing_kwargs`: None
356
+ - `include_inputs_for_metrics`: False
357
+ - `include_for_metrics`: []
358
+ - `eval_do_concat_batches`: True
359
+ - `fp16_backend`: auto
360
+ - `push_to_hub_model_id`: None
361
+ - `push_to_hub_organization`: None
362
+ - `mp_parameters`:
363
+ - `auto_find_batch_size`: False
364
+ - `full_determinism`: False
365
+ - `torchdynamo`: None
366
+ - `ray_scope`: last
367
+ - `ddp_timeout`: 1800
368
+ - `torch_compile`: False
369
+ - `torch_compile_backend`: None
370
+ - `torch_compile_mode`: None
371
+ - `dispatch_batches`: None
372
+ - `split_batches`: None
373
+ - `include_tokens_per_second`: False
374
+ - `include_num_input_tokens_seen`: False
375
+ - `neftune_noise_alpha`: None
376
+ - `optim_target_modules`: None
377
+ - `batch_eval_metrics`: False
378
+ - `eval_on_start`: False
379
+ - `use_liger_kernel`: False
380
+ - `eval_use_gather_object`: False
381
+ - `average_tokens_across_devices`: False
382
+ - `prompts`: None
383
+ - `batch_sampler`: no_duplicates
384
+ - `multi_dataset_batch_sampler`: proportional
385
+
386
+ </details>
387
+
388
+ ### Training Logs
389
+ | Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine |
390
+ |:------:|:----:|:-------------:|:---------------:|:------------------------------:|:-------------------------------:|:----------------------------:|
391
+ | -1 | -1 | - | - | 0.7287 | 0.8163 | 0.7432 |
392
+ | 0.1264 | 200 | 0.0671 | 0.0434 | - | - | - |
393
+ | 0.2528 | 400 | 0.0401 | 0.0344 | - | - | - |
394
+ | 0.3793 | 600 | 0.0342 | 0.0307 | - | - | - |
395
+ | 0.5057 | 800 | 0.0347 | 0.0327 | - | - | - |
396
+ | 0.6321 | 1000 | 0.0322 | 0.0287 | - | - | - |
397
+ | 0.7585 | 1200 | 0.032 | 0.0279 | - | - | - |
398
+ | 0.8850 | 1400 | 0.0307 | 0.0282 | - | - | - |
399
+ | 1.0114 | 1600 | 0.0267 | 0.0279 | - | - | - |
400
+ | 1.1378 | 1800 | 0.0244 | 0.0266 | - | - | - |
401
+ | 1.2642 | 2000 | 0.0227 | 0.0282 | - | - | - |
402
+ | 1.3906 | 2200 | 0.0237 | 0.0249 | - | - | - |
403
+ | 1.5171 | 2400 | 0.0222 | 0.0273 | - | - | - |
404
+ | 1.6435 | 2600 | 0.0235 | 0.0246 | - | - | - |
405
+ | 1.7699 | 2800 | 0.0228 | 0.0247 | - | - | - |
406
+ | 1.8963 | 3000 | 0.0225 | 0.0241 | - | - | - |
407
+ | 2.0228 | 3200 | 0.0213 | 0.0244 | - | - | - |
408
+ | 2.1492 | 3400 | 0.0169 | 0.0234 | - | - | - |
409
+ | 2.2756 | 3600 | 0.0178 | 0.0257 | - | - | - |
410
+ | 2.4020 | 3800 | 0.018 | 0.0236 | - | - | - |
411
+ | 2.5284 | 4000 | 0.0177 | 0.0230 | - | - | - |
412
+ | 2.6549 | 4200 | 0.0176 | 0.0234 | - | - | - |
413
+ | 2.7813 | 4400 | 0.0182 | 0.0229 | - | - | - |
414
+ | 2.9077 | 4600 | 0.0173 | 0.0221 | - | - | - |
415
+ | 3.0341 | 4800 | 0.0157 | 0.0232 | - | - | - |
416
+ | 3.1606 | 5000 | 0.0139 | 0.0225 | - | - | - |
417
+ | 3.2870 | 5200 | 0.0137 | 0.0222 | - | - | - |
418
+ | 3.4134 | 5400 | 0.0142 | 0.0224 | - | - | - |
419
+ | 3.5398 | 5600 | 0.0143 | 0.0224 | - | - | - |
420
+ | 3.6662 | 5800 | 0.0135 | 0.0225 | - | - | - |
421
+ | 3.7927 | 6000 | 0.0143 | 0.0223 | - | - | - |
422
+ | 3.9191 | 6200 | 0.0143 | 0.0234 | - | - | - |
423
+ | 4.0455 | 6400 | 0.0128 | 0.0219 | - | - | - |
424
+ | 4.1719 | 6600 | 0.0117 | 0.0222 | - | - | - |
425
+ | 4.2984 | 6800 | 0.0113 | 0.0217 | - | - | - |
426
+ | 4.4248 | 7000 | 0.0115 | 0.0220 | - | - | - |
427
+ | 4.5512 | 7200 | 0.012 | 0.0217 | - | - | - |
428
+ | 4.6776 | 7400 | 0.0113 | 0.0221 | - | - | - |
429
+ | 4.8040 | 7600 | 0.012 | 0.0217 | - | - | - |
430
+ | 4.9305 | 7800 | 0.0105 | 0.0217 | - | - | - |
431
+
432
+
433
+ ### Framework Versions
434
+ - Python: 3.11.11
435
+ - Sentence Transformers: 3.4.1
436
+ - Transformers: 4.48.3
437
+ - PyTorch: 2.5.1+cu124
438
+ - Accelerate: 1.3.0
439
+ - Datasets: 3.3.2
440
+ - Tokenizers: 0.21.0
441
+
442
+ ## Citation
443
+
444
+ ### BibTeX
445
+
446
+ #### Sentence Transformers
447
+ ```bibtex
448
+ @inproceedings{reimers-2019-sentence-bert,
449
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
450
+ author = "Reimers, Nils and Gurevych, Iryna",
451
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
452
+ month = "11",
453
+ year = "2019",
454
+ publisher = "Association for Computational Linguistics",
455
+ url = "https://arxiv.org/abs/1908.10084",
456
+ }
457
+ ```
458
+
459
+ <!--
460
+ ## Glossary
461
+
462
+ *Clearly define terms in order to be accessible across audiences.*
463
+ -->
464
+
465
+ <!--
466
+ ## Model Card Authors
467
+
468
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
469
+ -->
470
+
471
+ <!--
472
+ ## Model Card Contact
473
+
474
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
475
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/experiments/experiment_model-snowflake-s_20250226_145351/final_model",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13b59bdf0c1165a91ff7b12604ddba8bf0e7f26fe72fd1409c520568d5502bfc
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff