Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +8 -216
- config.json +98 -0
- label_mapping.json +90 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,216 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
language
|
4 |
-
|
5 |
-
|
6 |
-
-
|
7 |
-
|
8 |
-
|
9 |
-
- personally identifiable information
|
10 |
-
- pii
|
11 |
-
- ner
|
12 |
-
- azerbaijan
|
13 |
-
---
|
14 |
-
|
15 |
-
|
16 |
-
# PII NER Azerbaijani v2
|
17 |
-
|
18 |
-
**PII NER Azerbaijani** is a second version of fine-tuned Named Entity Recognition (NER) model (First version: <a target="_blank" href="https://huggingface.co/LocalDoc/private_ner_azerbaijani">PII NER Azerbaijani</a>) based on XLM-RoBERTa.
|
19 |
-
It is trained on Azerbaijani pii data for classification personally identifiable information such as names, dates of birth, cities, addresses, and phone numbers from text.
|
20 |
-
|
21 |
-
## Model Details
|
22 |
-
|
23 |
-
- **Base Model:** XLM-RoBERTa
|
24 |
-
- **Training Metrics:**
|
25 |
-
-
|
26 |
-
| Epoch | Training Loss | Validation Loss | Precision | Recall | F1 |
|
27 |
-
|-------|----------------|------------------|-----------|---------|----------|
|
28 |
-
| 1 | 0.029100 | 0.025319 | 0.963367 | 0.962449| 0.962907 |
|
29 |
-
| 2 | 0.019900 | 0.023291 | 0.964567 | 0.968474| 0.966517 |
|
30 |
-
| 3 | 0.015400 | 0.018993 | 0.969536 | 0.967555| 0.968544 |
|
31 |
-
| 4 | 0.012700 | 0.017730 | 0.971919 | 0.969768| 0.970842 |
|
32 |
-
| 5 | 0.011100 | 0.018095 | 0.973056 | 0.970075| 0.971563 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
- **Test Metrics:**
|
37 |
-
|
38 |
-
- **Precision:** 0.9760
|
39 |
-
- **Recall:** 0.9732
|
40 |
-
- **F1 Score:** 0.9746
|
41 |
-
|
42 |
-
|
43 |
-
## Detailed Test Classification Report
|
44 |
-
|
45 |
-
| Entity | Precision | Recall | F1-score | Support |
|
46 |
-
|---------------------|-----------|--------|----------|---------|
|
47 |
-
| AGE | 0.98 | 0.98 | 0.98 | 509 |
|
48 |
-
| BUILDINGNUM | 0.97 | 0.75 | 0.85 | 1285 |
|
49 |
-
| CITY | 1.00 | 1.00 | 1.00 | 2100 |
|
50 |
-
| CREDITCARDNUMBER | 0.99 | 0.98 | 0.99 | 249 |
|
51 |
-
| DATE | 0.85 | 0.92 | 0.88 | 1576 |
|
52 |
-
| DRIVERLICENSENUM | 0.98 | 0.98 | 0.98 | 258 |
|
53 |
-
| EMAIL | 0.98 | 1.00 | 0.99 | 1485 |
|
54 |
-
| GIVENNAME | 0.99 | 1.00 | 0.99 | 9926 |
|
55 |
-
| IDCARDNUM | 0.99 | 0.99 | 0.99 | 1174 |
|
56 |
-
| PASSPORTNUM | 0.99 | 0.99 | 0.99 | 426 |
|
57 |
-
| STREET | 0.94 | 0.98 | 0.96 | 1480 |
|
58 |
-
| SURNAME | 1.00 | 1.00 | 1.00 | 3357 |
|
59 |
-
| TAXNUM | 0.99 | 1.00 | 0.99 | 240 |
|
60 |
-
| TELEPHONENUM | 0.97 | 0.95 | 0.96 | 2175 |
|
61 |
-
| TIME | 0.96 | 0.96 | 0.96 | 2216 |
|
62 |
-
| ZIPCODE | 0.97 | 0.97 | 0.97 | 520 |
|
63 |
-
|
64 |
-
|
65 |
-
### Averages
|
66 |
-
|
67 |
-
| Metric | Precision | Recall | F1-score | Support |
|
68 |
-
|---------------|-----------|--------|----------|---------|
|
69 |
-
| **Micro avg** | 0.98 | 0.97 | 0.97 | 28976 |
|
70 |
-
| **Macro avg** | 0.97 | 0.96 | 0.97 | 28976 |
|
71 |
-
| **Weighted avg** | 0.98 | 0.97 | 0.97 | 28976 |
|
72 |
-
|
73 |
-
|
74 |
-
## A list of entities that the model is able to recognize.
|
75 |
-
|
76 |
-
```python
|
77 |
-
[
|
78 |
-
"AGE",
|
79 |
-
"BUILDINGNUM",
|
80 |
-
"CITY",
|
81 |
-
"CREDITCARDNUMBER",
|
82 |
-
"DATE",
|
83 |
-
"DRIVERLICENSENUM",
|
84 |
-
"EMAIL",
|
85 |
-
"GIVENNAME",
|
86 |
-
"IDCARDNUM",
|
87 |
-
"PASSPORTNUM",
|
88 |
-
"STREET",
|
89 |
-
"SURNAME",
|
90 |
-
"TAXNUM",
|
91 |
-
"TELEPHONENUM",
|
92 |
-
"TIME",
|
93 |
-
"ZIPCODE"
|
94 |
-
]
|
95 |
-
|
96 |
-
```
|
97 |
-
|
98 |
-
## Usage
|
99 |
-
|
100 |
-
To use the model for spell correction:
|
101 |
-
|
102 |
-
```python
|
103 |
-
import torch
|
104 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
105 |
-
|
106 |
-
model_id = "LocalDoc/private_ner_azerbaijani_v2"
|
107 |
-
|
108 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
109 |
-
model = AutoModelForTokenClassification.from_pretrained(model_id)
|
110 |
-
|
111 |
-
test_text = (
|
112 |
-
"Salam, mənim adım Əli Hüseynovdur. Doğum tarixim 15.05.1990-dır. Bakı şəhərində, Nizami küçəsində, 25/31 ünvanında yaşayıram. Telefon nömrəm +994552345678-dir."
|
113 |
-
)
|
114 |
-
|
115 |
-
inputs = tokenizer(test_text, return_tensors="pt", return_offsets_mapping=True)
|
116 |
-
|
117 |
-
offset_mapping = inputs.pop("offset_mapping")
|
118 |
-
|
119 |
-
with torch.no_grad():
|
120 |
-
outputs = model(**inputs)
|
121 |
-
|
122 |
-
predictions = torch.argmax(outputs.logits, dim=2)
|
123 |
-
|
124 |
-
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
|
125 |
-
offset_mapping = offset_mapping[0].tolist()
|
126 |
-
predicted_labels = [model.config.id2label[pred.item()] for pred in predictions[0]]
|
127 |
-
word_ids = inputs.word_ids(batch_index=0)
|
128 |
-
|
129 |
-
aggregated = []
|
130 |
-
prev_word_id = None
|
131 |
-
for idx, word_id in enumerate(word_ids):
|
132 |
-
if word_id is None:
|
133 |
-
continue
|
134 |
-
if word_id != prev_word_id:
|
135 |
-
aggregated.append({
|
136 |
-
"word_id": word_id,
|
137 |
-
"tokens": [tokens[idx]],
|
138 |
-
"offsets": [offset_mapping[idx]],
|
139 |
-
"label": predicted_labels[idx]
|
140 |
-
})
|
141 |
-
else:
|
142 |
-
aggregated[-1]["tokens"].append(tokens[idx])
|
143 |
-
aggregated[-1]["offsets"].append(offset_mapping[idx])
|
144 |
-
prev_word_id = word_id
|
145 |
-
|
146 |
-
entities = []
|
147 |
-
current_entity = None
|
148 |
-
for word in aggregated:
|
149 |
-
if word["label"] == "O":
|
150 |
-
if current_entity is not None:
|
151 |
-
entities.append(current_entity)
|
152 |
-
current_entity = None
|
153 |
-
else:
|
154 |
-
if current_entity is None:
|
155 |
-
current_entity = {
|
156 |
-
"type": word["label"],
|
157 |
-
"start": word["offsets"][0][0],
|
158 |
-
"end": word["offsets"][-1][1]
|
159 |
-
}
|
160 |
-
else:
|
161 |
-
if word["label"] == current_entity["type"]:
|
162 |
-
current_entity["end"] = word["offsets"][-1][1]
|
163 |
-
else:
|
164 |
-
entities.append(current_entity)
|
165 |
-
current_entity = {
|
166 |
-
"type": word["label"],
|
167 |
-
"start": word["offsets"][0][0],
|
168 |
-
"end": word["offsets"][-1][1]
|
169 |
-
}
|
170 |
-
if current_entity is not None:
|
171 |
-
entities.append(current_entity)
|
172 |
-
|
173 |
-
for entity in entities:
|
174 |
-
entity["text"] = test_text[entity["start"]:entity["end"]]
|
175 |
-
|
176 |
-
for entity in entities:
|
177 |
-
print(entity)
|
178 |
-
```
|
179 |
-
|
180 |
-
```json
|
181 |
-
{'type': 'FIRSTNAME', 'start': 18, 'end': 21, 'text': 'Əli'}
|
182 |
-
{'type': 'LASTNAME', 'start': 22, 'end': 34, 'text': 'Hüseynovdur.'}
|
183 |
-
{'type': 'DOB', 'start': 49, 'end': 64, 'text': '15.05.1990-dır.'}
|
184 |
-
{'type': 'STREET', 'start': 81, 'end': 87, 'text': 'Nizami'}
|
185 |
-
{'type': 'BUILDINGNUMBER', 'start': 99, 'end': 104, 'text': '25/31'}
|
186 |
-
{'type': 'PHONENUMBER', 'start': 141, 'end': 159, 'text': '+994552345678-dir.'}
|
187 |
-
```
|
188 |
-
|
189 |
-
|
190 |
-
## CC BY 4.0 License — What It Allows
|
191 |
-
|
192 |
-
The **Creative Commons Attribution 4.0 International (CC BY 4.0)** license allows:
|
193 |
-
|
194 |
-
### ✅ You Can:
|
195 |
-
- **Use** the model for any purpose, including commercial use.
|
196 |
-
- **Share** it — copy and redistribute in any medium or format.
|
197 |
-
- **Adapt** it — remix, transform, and build upon it for any purpose, even commercially.
|
198 |
-
|
199 |
-
### 📝 You Must:
|
200 |
-
- **Give appropriate credit** — Attribute the original creator (e.g., name, link to the license, and indicate if changes were made).
|
201 |
-
- **Not imply endorsement** — Do not suggest the original author endorses you or your use.
|
202 |
-
|
203 |
-
### ❌ You Cannot:
|
204 |
-
- Apply legal terms or technological measures that legally restrict others from doing anything the license permits (no DRM or additional restrictions).
|
205 |
-
|
206 |
-
|
207 |
-
### Summary:
|
208 |
-
You are free to use, modify, and distribute the model — even for commercial purposes — as long as you give proper credit to the original creator.
|
209 |
-
|
210 |
-
|
211 |
-
For more information, please refer to the <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/deed.en">CC BY-NC-ND 4.0 license</a>.
|
212 |
-
|
213 |
-
|
214 |
-
## Contact
|
215 |
-
|
216 |
-
For more information, questions, or issues, please contact LocalDoc at [v.resad.89@gmail.com].
|
|
|
1 |
+
# Azerbaijani NER Model
|
2 |
+
|
3 |
+
This is a Named Entity Recognition model for Azerbaijani language based on XLM-RoBERTa.
|
4 |
+
|
5 |
+
## Model details
|
6 |
+
- Base model: xlm-roberta-base
|
7 |
+
- Trained for Named Entity Recognition
|
8 |
+
- Language: Azerbaijani
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./results/checkpoint-15080",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "O",
|
15 |
+
"1": "B-AGE",
|
16 |
+
"2": "B-BUILDINGNUM",
|
17 |
+
"3": "B-CITY",
|
18 |
+
"4": "B-CREDITCARDNUMBER",
|
19 |
+
"5": "B-DATE",
|
20 |
+
"6": "B-DRIVERLICENSENUM",
|
21 |
+
"7": "B-EMAIL",
|
22 |
+
"8": "B-GIVENNAME",
|
23 |
+
"9": "B-IDCARDNUM",
|
24 |
+
"10": "B-PASSPORTNUM",
|
25 |
+
"11": "B-STREET",
|
26 |
+
"12": "B-SURNAME",
|
27 |
+
"13": "B-TAXNUM",
|
28 |
+
"14": "B-TELEPHONENUM",
|
29 |
+
"15": "B-TIME",
|
30 |
+
"16": "B-ZIPCODE",
|
31 |
+
"17": "I-AGE",
|
32 |
+
"18": "I-BUILDINGNUM",
|
33 |
+
"19": "I-CITY",
|
34 |
+
"20": "I-CREDITCARDNUMBER",
|
35 |
+
"21": "I-DATE",
|
36 |
+
"22": "I-DRIVERLICENSENUM",
|
37 |
+
"23": "I-EMAIL",
|
38 |
+
"24": "I-GIVENNAME",
|
39 |
+
"25": "I-IDCARDNUM",
|
40 |
+
"26": "I-PASSPORTNUM",
|
41 |
+
"27": "I-STREET",
|
42 |
+
"28": "I-SURNAME",
|
43 |
+
"29": "I-TAXNUM",
|
44 |
+
"30": "I-TELEPHONENUM",
|
45 |
+
"31": "I-TIME",
|
46 |
+
"32": "I-ZIPCODE"
|
47 |
+
},
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": 3072,
|
50 |
+
"label2id": {
|
51 |
+
"B-AGE": 1,
|
52 |
+
"B-BUILDINGNUM": 2,
|
53 |
+
"B-CITY": 3,
|
54 |
+
"B-CREDITCARDNUMBER": 4,
|
55 |
+
"B-DATE": 5,
|
56 |
+
"B-DRIVERLICENSENUM": 6,
|
57 |
+
"B-EMAIL": 7,
|
58 |
+
"B-GIVENNAME": 8,
|
59 |
+
"B-IDCARDNUM": 9,
|
60 |
+
"B-PASSPORTNUM": 10,
|
61 |
+
"B-STREET": 11,
|
62 |
+
"B-SURNAME": 12,
|
63 |
+
"B-TAXNUM": 13,
|
64 |
+
"B-TELEPHONENUM": 14,
|
65 |
+
"B-TIME": 15,
|
66 |
+
"B-ZIPCODE": 16,
|
67 |
+
"I-AGE": 17,
|
68 |
+
"I-BUILDINGNUM": 18,
|
69 |
+
"I-CITY": 19,
|
70 |
+
"I-CREDITCARDNUMBER": 20,
|
71 |
+
"I-DATE": 21,
|
72 |
+
"I-DRIVERLICENSENUM": 22,
|
73 |
+
"I-EMAIL": 23,
|
74 |
+
"I-GIVENNAME": 24,
|
75 |
+
"I-IDCARDNUM": 25,
|
76 |
+
"I-PASSPORTNUM": 26,
|
77 |
+
"I-STREET": 27,
|
78 |
+
"I-SURNAME": 28,
|
79 |
+
"I-TAXNUM": 29,
|
80 |
+
"I-TELEPHONENUM": 30,
|
81 |
+
"I-TIME": 31,
|
82 |
+
"I-ZIPCODE": 32,
|
83 |
+
"O": 0
|
84 |
+
},
|
85 |
+
"layer_norm_eps": 1e-05,
|
86 |
+
"max_position_embeddings": 514,
|
87 |
+
"model_type": "xlm-roberta",
|
88 |
+
"num_attention_heads": 12,
|
89 |
+
"num_hidden_layers": 12,
|
90 |
+
"output_past": true,
|
91 |
+
"pad_token_id": 1,
|
92 |
+
"position_embedding_type": "absolute",
|
93 |
+
"torch_dtype": "float32",
|
94 |
+
"transformers_version": "4.38.0",
|
95 |
+
"type_vocab_size": 1,
|
96 |
+
"use_cache": true,
|
97 |
+
"vocab_size": 250002
|
98 |
+
}
|
label_mapping.json
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id_to_label": {
|
3 |
+
"0": "O",
|
4 |
+
"1": "B-AGE",
|
5 |
+
"2": "B-BUILDINGNUM",
|
6 |
+
"3": "B-CITY",
|
7 |
+
"4": "B-CREDITCARDNUMBER",
|
8 |
+
"5": "B-DATE",
|
9 |
+
"6": "B-DRIVERLICENSENUM",
|
10 |
+
"7": "B-EMAIL",
|
11 |
+
"8": "B-GIVENNAME",
|
12 |
+
"9": "B-IDCARDNUM",
|
13 |
+
"10": "B-PASSPORTNUM",
|
14 |
+
"11": "B-STREET",
|
15 |
+
"12": "B-SURNAME",
|
16 |
+
"13": "B-TAXNUM",
|
17 |
+
"14": "B-TELEPHONENUM",
|
18 |
+
"15": "B-TIME",
|
19 |
+
"16": "B-ZIPCODE",
|
20 |
+
"17": "I-AGE",
|
21 |
+
"18": "I-BUILDINGNUM",
|
22 |
+
"19": "I-CITY",
|
23 |
+
"20": "I-CREDITCARDNUMBER",
|
24 |
+
"21": "I-DATE",
|
25 |
+
"22": "I-DRIVERLICENSENUM",
|
26 |
+
"23": "I-EMAIL",
|
27 |
+
"24": "I-GIVENNAME",
|
28 |
+
"25": "I-IDCARDNUM",
|
29 |
+
"26": "I-PASSPORTNUM",
|
30 |
+
"27": "I-STREET",
|
31 |
+
"28": "I-SURNAME",
|
32 |
+
"29": "I-TAXNUM",
|
33 |
+
"30": "I-TELEPHONENUM",
|
34 |
+
"31": "I-TIME",
|
35 |
+
"32": "I-ZIPCODE"
|
36 |
+
},
|
37 |
+
"label_to_id": {
|
38 |
+
"O": 0,
|
39 |
+
"B-AGE": 1,
|
40 |
+
"B-BUILDINGNUM": 2,
|
41 |
+
"B-CITY": 3,
|
42 |
+
"B-CREDITCARDNUMBER": 4,
|
43 |
+
"B-DATE": 5,
|
44 |
+
"B-DRIVERLICENSENUM": 6,
|
45 |
+
"B-EMAIL": 7,
|
46 |
+
"B-GIVENNAME": 8,
|
47 |
+
"B-IDCARDNUM": 9,
|
48 |
+
"B-PASSPORTNUM": 10,
|
49 |
+
"B-STREET": 11,
|
50 |
+
"B-SURNAME": 12,
|
51 |
+
"B-TAXNUM": 13,
|
52 |
+
"B-TELEPHONENUM": 14,
|
53 |
+
"B-TIME": 15,
|
54 |
+
"B-ZIPCODE": 16,
|
55 |
+
"I-AGE": 17,
|
56 |
+
"I-BUILDINGNUM": 18,
|
57 |
+
"I-CITY": 19,
|
58 |
+
"I-CREDITCARDNUMBER": 20,
|
59 |
+
"I-DATE": 21,
|
60 |
+
"I-DRIVERLICENSENUM": 22,
|
61 |
+
"I-EMAIL": 23,
|
62 |
+
"I-GIVENNAME": 24,
|
63 |
+
"I-IDCARDNUM": 25,
|
64 |
+
"I-PASSPORTNUM": 26,
|
65 |
+
"I-STREET": 27,
|
66 |
+
"I-SURNAME": 28,
|
67 |
+
"I-TAXNUM": 29,
|
68 |
+
"I-TELEPHONENUM": 30,
|
69 |
+
"I-TIME": 31,
|
70 |
+
"I-ZIPCODE": 32
|
71 |
+
},
|
72 |
+
"unique_labels": [
|
73 |
+
"AGE",
|
74 |
+
"BUILDINGNUM",
|
75 |
+
"CITY",
|
76 |
+
"CREDITCARDNUMBER",
|
77 |
+
"DATE",
|
78 |
+
"DRIVERLICENSENUM",
|
79 |
+
"EMAIL",
|
80 |
+
"GIVENNAME",
|
81 |
+
"IDCARDNUM",
|
82 |
+
"PASSPORTNUM",
|
83 |
+
"STREET",
|
84 |
+
"SURNAME",
|
85 |
+
"TAXNUM",
|
86 |
+
"TELEPHONENUM",
|
87 |
+
"TIME",
|
88 |
+
"ZIPCODE"
|
89 |
+
]
|
90 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51b296ad6d7359d18118e4269b6e7d74e8e61d5d2d495935ffb12a7a1f92a835
|
3 |
+
size 1109937788
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59925fcb90c92b894cb93e51bb9b4a6105c5c249fe54ce1c704420ac39b81af
|
3 |
+
size 17082756
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|