--- language: - en base_model: - black-forest-labs/FLUX.1-Kontext-dev pipeline_tag: image-to-image library_name: diffusers tags: - Style - lora - LEGO - FluxKontext - Image-to-Image --- # LEGO Style LoRA for FLUX.1 Kontext Model This repository provides the **LEGO** style LoRA adapter for the [FLUX.1 Kontext Model](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev). This LoRA is part of a collection of 20+ style LoRAs trained on high-quality paired data generated by GPT-4o from the [OmniConsistency](https://huggingface.co/datasets/showlab/OmniConsistency) dataset. Contributor: Tian YE & Song FEI, HKUST Guangzhou. ## Style Showcase Here are some examples of images generated using this style LoRA: ![LEGO Style Example](./example-1.png) ![LEGO Style Example](./example-2.png) ![LEGO Style Example](./example-3.png) ![LEGO Style Example](./example-4.png) ![LEGO Style Example](./example-5.png) ![LEGO Style Example](./example-6.png) ## Inference Example ```python from diffusers import FluxKontextPipeline from diffusers.utils import load_image import torch # Load the base pipeline pipeline = FluxKontextPipeline.from_pretrained( "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16 ).to('cuda') # Load the LoRA adapter for the LEGO style directly from the Hub pipeline.load_lora_weights("Kontext-Style/LEGO_lora", weight_name="LEGO_lora_weights.safetensors", adapter_name="lora") pipeline.set_adapters(["lora"], adapter_weights=[1]) # Load a source image (you can use any image) image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024)) # Prepare the prompt # The style_name is used in the prompt and for the output filename. style_name = "LEGO" prompt = f"Turn this image into the LEGO style." # Run inference result_image = pipeline( image=image, prompt=prompt, height=1024, width=1024, num_inference_steps=24 ).images[0] # Save the result output_filename = f"{style_name.replace(' ', '_')}.png" result_image.save(output_filename) print(f"Image saved as {output_filename}") ``` Feel free to open an issue or contact us for feedback or collaboration!