Yanisadel commited on
Commit
b917499
·
verified ·
1 Parent(s): 9df20c0

Upload sCT

Browse files
Files changed (2) hide show
  1. config.json +2 -2
  2. pytorch_sct.py +756 -0
config.json CHANGED
@@ -6,8 +6,8 @@
6
  "attention_heads": 16,
7
  "attention_maps_to_save": [],
8
  "auto_map": {
9
- "AutoConfig": "sct.sCTConfig",
10
- "AutoModel": "sct.sCT"
11
  },
12
  "cell_len": 19968,
13
  "embed_dim": 1024,
 
6
  "attention_heads": 16,
7
  "attention_maps_to_save": [],
8
  "auto_map": {
9
+ "AutoConfig": "pytorch_sct.sCTConfig",
10
+ "AutoModel": "pytorch_sct.sCT"
11
  },
12
  "cell_len": 19968,
13
  "embed_dim": 1024,
pytorch_sct.py ADDED
@@ -0,0 +1,756 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from dataclasses import dataclass
3
+ from typing import Optional, Tuple
4
+
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F # noqa: N812
9
+ from transformers import PretrainedConfig, PreTrainedModel
10
+
11
+
12
+ class GeLU(nn.Module):
13
+ def __init__(self) -> None:
14
+ """
15
+ This is the gelu implementation from the original ESM repo.
16
+ Using F.gelu yields subtly wrong results.
17
+ """
18
+ super().__init__()
19
+
20
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
21
+ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
22
+
23
+
24
+ @dataclass
25
+ class RotaryEmbeddingConfig:
26
+ """
27
+ Parameters to initialize the RotaryEmbedding layer. The rescaling factor allows
28
+ to adapt the rotary embeddings to larger lengths than what was used for training.
29
+ One of this strategy is presented in the Yarn paper: https://arxiv.org/pdf/2309.00071.pdf. # noqa
30
+ Args:
31
+ """
32
+
33
+ rescaling_factor: Optional[float]
34
+
35
+
36
+ class RotaryEmbedding(torch.nn.Module):
37
+ """
38
+ Rotary position embeddings based on those in
39
+ [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer).
40
+ Query and keys are transformed by rotation
41
+ matrices which depend on their relative positions.
42
+ """
43
+
44
+ def __init__(self, dim: int, rotary_embedding_config: RotaryEmbeddingConfig):
45
+ super().__init__()
46
+
47
+ # Extract argument from the config
48
+ self.rescaling_factor = rotary_embedding_config.rescaling_factor
49
+ self.upper_freq = 10000
50
+ self.dim = dim
51
+
52
+ self._seq_len_cached = None
53
+ self._cos_cached = None
54
+ self._sin_cached = None
55
+
56
+ def _apply_rotary_pos_emb(
57
+ self,
58
+ heads: torch.Tensor,
59
+ cos: torch.Tensor,
60
+ sin: torch.Tensor,
61
+ ) -> torch.Tensor:
62
+ """ """
63
+ x_first, x_second = (
64
+ heads[..., : heads.shape[-1] // 2],
65
+ heads[..., heads.shape[-1] // 2 :],
66
+ )
67
+
68
+ first_part = x_first * cos - x_second * sin
69
+ second_part = x_second * cos + x_first * sin
70
+
71
+ return torch.cat((first_part, second_part), dim=-1)
72
+
73
+ def _compute_cos_sin_tables(
74
+ self, x: torch.Tensor, inv_freq: torch.Tensor, seq_dimension: int = 2
75
+ ) -> tuple[torch.Tensor, torch.Tensor]:
76
+ seq_len = x.shape[seq_dimension]
77
+ # Reset the tables if the sequence length has changed,
78
+ # or if we're on a new device (possibly due to tracing for instance)
79
+ self._seq_len_cached = seq_len
80
+ t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(inv_freq)
81
+ # freqs = torch.outer(t, inv_freq)
82
+ freqs = torch.einsum("i, j -> ij", t, inv_freq)
83
+
84
+ self._cos_cached = torch.cos(freqs)[None, :, None, :]
85
+ self._sin_cached = torch.sin(freqs)[None, :, None, :]
86
+ # emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
87
+
88
+ # self._cos_cached = emb.cos()[None, None, :, :]
89
+ # self._sin_cached = emb.sin()[None, None, :, :]
90
+
91
+ return self._cos_cached, self._sin_cached
92
+
93
+ def forward(
94
+ self, q: torch.Tensor, k: torch.Tensor
95
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
96
+ if self.rescaling_factor is None:
97
+ inv_freq = 1.0 / (
98
+ self.upper_freq ** (torch.arange(0, self.dim, 2).float() / self.dim)
99
+ )
100
+ else:
101
+ updated_base = self.upper_freq * (
102
+ self.rescaling_factor ** (self.dim / (self.dim - 2))
103
+ )
104
+ inv_freq = 1.0 / (
105
+ updated_base ** (torch.arange(0, self.dim, 2).float() / self.dim)
106
+ )
107
+
108
+ self._cos_cached, self._sin_cached = self._compute_cos_sin_tables(
109
+ q,
110
+ inv_freq,
111
+ seq_dimension=-3,
112
+ )
113
+
114
+ return (
115
+ self._apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
116
+ self._apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
117
+ )
118
+
119
+
120
+ class ResidualConvBlock(nn.Module):
121
+ """
122
+ Conv Block with Residual connection.
123
+ """
124
+
125
+ def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
126
+ super().__init__()
127
+ self.conv_block = ConvBlock(
128
+ dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
129
+ )
130
+
131
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
132
+ y = self.conv_block(x)
133
+ return x.reshape(y.shape) + y
134
+
135
+
136
+ class ConvBlock(nn.Module):
137
+ """
138
+ Conv Block.
139
+ """
140
+
141
+ def __init__(self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int = 1):
142
+ super().__init__()
143
+ self.conv = nn.Conv1d(
144
+ in_channels=dim_in,
145
+ out_channels=dim_out,
146
+ kernel_size=kernel_size,
147
+ padding="same",
148
+ )
149
+ self.layer_norm = nn.LayerNorm(seq_len, eps=1e-5)
150
+
151
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
152
+ x = self.layer_norm(x)
153
+ x = x.reshape(x.shape[0], x.shape[1], -1)
154
+ x = self.conv(x)
155
+ x = F.gelu(x, approximate="tanh")
156
+ return x
157
+
158
+
159
+ class ResidualDeConvBlock(nn.Module):
160
+ """
161
+ Conv Block with Residual connection.
162
+ """
163
+
164
+ def __init__(
165
+ self,
166
+ dim_in: int,
167
+ dim_out: int,
168
+ seq_len: int,
169
+ kernel_size: int = 1,
170
+ stride: int = 1,
171
+ ):
172
+ super().__init__()
173
+ self.deconv_block = DeConvBlock(
174
+ dim_in=dim_in,
175
+ dim_out=dim_out,
176
+ seq_len=seq_len,
177
+ kernel_size=kernel_size,
178
+ stride=stride,
179
+ )
180
+
181
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
182
+ y = self.deconv_block(x)
183
+ return x.reshape(y.shape) + y
184
+
185
+
186
+ class DeConvBlock(nn.Module):
187
+ """
188
+ DeConv Block.
189
+ """
190
+
191
+ def __init__(
192
+ self,
193
+ dim_in: int,
194
+ dim_out: int,
195
+ seq_len: int,
196
+ kernel_size: int = 1,
197
+ stride: int = 1,
198
+ ):
199
+ super().__init__()
200
+ self.deconv = nn.ConvTranspose1d(
201
+ in_channels=dim_in,
202
+ out_channels=dim_out,
203
+ kernel_size=kernel_size,
204
+ stride=stride,
205
+ padding=0,
206
+ )
207
+ self.layer_norm = nn.LayerNorm(seq_len)
208
+ self.kernel_size = kernel_size
209
+
210
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
211
+ x = self.layer_norm(x)
212
+ x = x.reshape(x.shape[0], x.shape[1], -1)
213
+ x = self.deconv(x)
214
+ if self.kernel_size == 5:
215
+ # handle the special case where haiku
216
+ # deconv removes padding automatically
217
+ x = x[:, :, 1:-2]
218
+ x = F.gelu(x, approximate="tanh")
219
+ return x
220
+
221
+
222
+ class SpatialEncoding(nn.Module):
223
+ """
224
+ Spatial coordinates encoding module
225
+ """
226
+
227
+ def __init__(
228
+ self,
229
+ embed_dim: int,
230
+ num_scales: int = 10,
231
+ sigma_min: float = 1.0,
232
+ sigma_max: float = 10.0,
233
+ ):
234
+ super().__init__()
235
+ self.num_scales = num_scales
236
+ self.sigma_min = sigma_min
237
+ self.sigma_max = sigma_max
238
+ self.g = sigma_max / sigma_min
239
+ self.scales = torch.linspace(sigma_min, sigma_max, num_scales)
240
+ self.fc_layer = nn.Linear(embed_dim, embed_dim)
241
+
242
+ def scale_specific_encoder(
243
+ self, coordinates: torch.Tensor, scale: float
244
+ ) -> torch.Tensor:
245
+ x, y = coordinates[..., 0], coordinates[..., 1]
246
+ constant = self.sigma_min * (self.g ** (scale / (self.num_scales - 1)))
247
+ x_transform = torch.cos(x / constant)
248
+ y_transform = torch.sin(y / constant)
249
+ transformed_coordinates = torch.stack([x_transform, y_transform], dim=-1)
250
+ return transformed_coordinates
251
+
252
+ def forward(self, coordinates: torch.Tensor) -> torch.Tensor:
253
+ transformed_coordinates = [
254
+ self.scale_specific_encoder(coordinates, scale) for scale in self.scales
255
+ ]
256
+ transformed_coordinates = torch.cat(transformed_coordinates, dim=-1)
257
+ return self.fc_layer(transformed_coordinates)
258
+
259
+
260
+ class ConvTowerBlock(nn.Module):
261
+ def __init__(
262
+ self, dim_in: int, dim_out: int, seq_len: int, kernel_size: int, num_cells: int
263
+ ) -> None:
264
+ super().__init__()
265
+ self.conv_layer = ConvBlock(
266
+ dim_in=dim_in, dim_out=dim_out, seq_len=seq_len, kernel_size=kernel_size
267
+ )
268
+ self.res_conv = ResidualConvBlock(
269
+ dim_in=dim_out, dim_out=dim_out, seq_len=seq_len, kernel_size=1
270
+ )
271
+ self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2)
272
+ self.num_cells = num_cells
273
+
274
+ def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
275
+ residual = x
276
+ x = x.reshape(x.shape[0], x.shape[1], self.num_cells, -1) # noqa: FKA100
277
+ x = self.conv_layer(x)
278
+ x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
279
+ x = self.res_conv(x)
280
+ x = self.avg_pool(x)
281
+ return x, residual
282
+
283
+
284
+ class DeConvTowerBlock(nn.Module):
285
+ def __init__(
286
+ self,
287
+ dim_in: int,
288
+ dim_out: int,
289
+ kernel_size: int,
290
+ seq_len: int,
291
+ stride: int = 2,
292
+ num_cells: int = 1,
293
+ ):
294
+ super().__init__()
295
+ self.deconv_block = DeConvBlock(
296
+ dim_in=dim_in,
297
+ dim_out=dim_out,
298
+ seq_len=seq_len,
299
+ kernel_size=kernel_size,
300
+ stride=stride,
301
+ )
302
+ self.res_deconv_block = ResidualDeConvBlock(
303
+ dim_in=dim_out, dim_out=dim_out, seq_len=seq_len * 2, kernel_size=1
304
+ )
305
+ self.num_cells = num_cells
306
+
307
+ def forward(self, x: torch.Tensor, res: torch.Tensor) -> torch.Tensor:
308
+ x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
309
+ x = self.deconv_block(x)
310
+ x = x.reshape((x.shape[0], x.shape[1], self.num_cells, -1))
311
+ x = self.res_deconv_block(x)
312
+
313
+ x = x + res
314
+ return x
315
+
316
+
317
+ class MultiHeadAttention(nn.Module):
318
+ def __init__(
319
+ self,
320
+ num_heads: int,
321
+ key_size: int,
322
+ rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
323
+ add_bias_kv: bool = False,
324
+ value_size: Optional[int] = None,
325
+ model_size: Optional[int] = None,
326
+ name: Optional[str] = None,
327
+ ):
328
+ super().__init__()
329
+ if not model_size:
330
+ model_size = key_size
331
+ if not value_size:
332
+ value_size = key_size
333
+ self.model_size = model_size
334
+ self.key_size = key_size
335
+ self.value_size = value_size
336
+ self.add_bias_kv = add_bias_kv
337
+ self.name = name
338
+ self.num_heads = num_heads
339
+ self._rotary_embedding_config = rotary_embedding_config
340
+
341
+ self.w_k = nn.Linear(self.model_size, self.num_heads * self.key_size)
342
+ self.w_q = nn.Linear(self.model_size, self.num_heads * self.key_size)
343
+ self.w_v = nn.Linear(self.model_size, self.num_heads * self.value_size)
344
+ self.output = nn.Linear(self.num_heads * self.value_size, self.model_size)
345
+ if self._rotary_embedding_config:
346
+ self._rotary_embedding = RotaryEmbedding(
347
+ self.key_size, self._rotary_embedding_config
348
+ )
349
+
350
+ def apply_rotary_embeddings(
351
+ self,
352
+ query: torch.Tensor,
353
+ key: torch.Tensor,
354
+ ) -> tuple[torch.Tensor, torch.Tensor]:
355
+ """ """
356
+ query, key = self._rotary_embedding(query, key)
357
+ return query, key
358
+
359
+ def forward(
360
+ self,
361
+ query: torch.Tensor,
362
+ key: torch.Tensor,
363
+ value: torch.Tensor,
364
+ attention_mask: Optional[torch.Tensor] = None,
365
+ attention_weight_bias: Optional[torch.Tensor] = None,
366
+ ) -> dict[str, torch.Tensor]:
367
+ """
368
+ Returns:
369
+ dictionary containing attention weights
370
+ and outputs.
371
+ """
372
+ key_heads = self.w_k(key).reshape(
373
+ (*key.shape[:-1], self.num_heads, self.key_size)
374
+ )
375
+ query_heads = self.w_q(query).reshape(
376
+ (*query.shape[:-1], self.num_heads, self.key_size)
377
+ )
378
+ value_heads = self.w_v(value).reshape(
379
+ (*value.shape[:-1], self.num_heads, self.value_size)
380
+ )
381
+ if self._rotary_embedding_config:
382
+ query_heads, key_heads = self.apply_rotary_embeddings(
383
+ query_heads, key_heads
384
+ )
385
+ attention_weights = torch.einsum(
386
+ "...thd, ...Thd -> ...htT", query_heads, key_heads
387
+ )
388
+ sqrt_key_size = np.sqrt(self.key_size)
389
+ attention_weights = attention_weights / sqrt_key_size
390
+ if attention_mask:
391
+ attention_weights = torch.where(attention_mask, attention_weights, -1e30)
392
+ if attention_weight_bias:
393
+ attention_weights = F.softmax(
394
+ attention_weights + attention_weight_bias, dim=-1
395
+ )
396
+ else:
397
+ attention_weights = F.softmax(attention_weights, dim=-1)
398
+ value_out = torch.einsum(
399
+ "...htT, ...Thd->...thd", attention_weights, value_heads
400
+ )
401
+ value_out = value_out.reshape((*value_out.shape[:-2], -1))
402
+ embeddings = self.output(value_out)
403
+
404
+ return {"attention_weights": attention_weights, "embeddings": embeddings}
405
+
406
+
407
+ class SelfAttentionBlock(nn.Module):
408
+ def __init__(
409
+ self,
410
+ num_heads: int,
411
+ embed_dim: int,
412
+ ffn_embed_dim: int,
413
+ key_size: Optional[int] = None,
414
+ add_bias_kv: bool = False,
415
+ add_bias_fnn: bool = True,
416
+ ffn_activation_name: str = "gelu-no-approx",
417
+ use_glu_in_ffn: bool = False,
418
+ layer_norm_eps: float = 1e-5, # this is the default haiku value
419
+ pre_layer_norm: bool = True,
420
+ name: Optional[str] = None,
421
+ rotary_embedding_config: Optional[RotaryEmbeddingConfig] = None,
422
+ ):
423
+ super().__init__()
424
+ if key_size is None:
425
+ if embed_dim % num_heads != 0:
426
+ raise ValueError(
427
+ f"The embedding dimension should be divisible by the number of "
428
+ f"heads, however provided embedding dimension is {embed_dim} and "
429
+ f"the number of heads is {num_heads}."
430
+ )
431
+ else:
432
+ key_size = embed_dim // num_heads
433
+
434
+ # Get ffn activation function
435
+ self._pre_layer_norm = pre_layer_norm
436
+ self._use_glu_in_fnn = use_glu_in_ffn
437
+ # Define layers
438
+ if use_glu_in_ffn:
439
+ # user should multiply ffn_embed_dim by 2/3 when using GLU
440
+ # to keep total number of parameters equal
441
+ # see https://arxiv.org/pdf/2002.05202.pdf. for more details
442
+ # we multiply by 2 here as the output will be split in 2 for GLU
443
+ self.fc1 = nn.Linear(embed_dim, int(2 * ffn_embed_dim), bias=add_bias_fnn)
444
+ else:
445
+ self.fc1 = nn.Linear(embed_dim, ffn_embed_dim, bias=add_bias_fnn)
446
+
447
+ self.fc2 = nn.Linear(ffn_embed_dim, embed_dim, bias=add_bias_fnn)
448
+
449
+ self.layer_norm_self_attention = nn.LayerNorm(
450
+ embed_dim,
451
+ )
452
+ self.layer_norm_mlp = nn.LayerNorm(embed_dim)
453
+ if ffn_activation_name == "swish":
454
+ self._ffn_activation_fn = nn.SiLU()
455
+ elif ffn_activation_name == "gelu-no-approx":
456
+ self._ffn_activation_fn = nn.GeLU(approximate="tanh")
457
+ else:
458
+ self._ffn_activation_fn = getattr(torch.nn, ffn_activation_name)
459
+
460
+ self.mha = MultiHeadAttention(
461
+ num_heads=num_heads,
462
+ key_size=key_size,
463
+ add_bias_kv=add_bias_kv,
464
+ model_size=embed_dim,
465
+ name="self_attention",
466
+ rotary_embedding_config=rotary_embedding_config,
467
+ )
468
+
469
+ def mlp(self, embed: torch.Tensor) -> torch.Tensor:
470
+
471
+ if self._pre_layer_norm:
472
+ x = self.layer_norm_mlp(embed)
473
+ else:
474
+ x = embed
475
+
476
+ if self._use_glu_in_fnn:
477
+ x = self.fc1(x)
478
+ x1, x2 = torch.split(x, split_size_or_sections=x.shape[-1] // 2, dim=-1)
479
+ x = self._ffn_activation_fn(x1) * x2
480
+ else:
481
+ x = self._ffn_activation_fn(self.fc1(x))
482
+ x = self.fc2(x)
483
+
484
+ if not self._pre_layer_norm:
485
+ x = self.layer_norm_mlp(x + embed)
486
+ return x
487
+
488
+ def forward(
489
+ self,
490
+ x: torch.Tensor,
491
+ attention_mask: Optional[torch.Tensor] = None,
492
+ attention_weight_bias: Optional[torch.Tensor] = None,
493
+ ) -> torch.Tensor:
494
+
495
+ res = x
496
+ if self._pre_layer_norm:
497
+ x = self.layer_norm_self_attention(x)
498
+
499
+ output = self.mha(
500
+ x,
501
+ x,
502
+ x,
503
+ attention_mask=attention_mask,
504
+ attention_weight_bias=attention_weight_bias,
505
+ )
506
+
507
+ if not self._pre_layer_norm:
508
+ output["embeddings"] = self.layer_norm_self_attention(
509
+ output["embeddings"] + res
510
+ )
511
+
512
+ x = output["embeddings"]
513
+ else:
514
+ x = output["embeddings"]
515
+ x = res + x
516
+
517
+ # MLP
518
+ if not self._pre_layer_norm:
519
+ x = self.mlp(x)
520
+ else:
521
+ x = x + self.mlp(x)
522
+
523
+ output["embeddings"] = x
524
+ return output
525
+
526
+
527
+ class LMHead(nn.Module):
528
+ def __init__(
529
+ self, dim_in: int, embed_dim: int, dim_out: int, num_hidden_layers: int
530
+ ) -> None:
531
+ """ """
532
+ super().__init__()
533
+ self.num_hidden_layers = num_hidden_layers
534
+ self.linear_layers = nn.ModuleList([nn.Linear(dim_in, embed_dim)])
535
+ self.linear_layers.extend(
536
+ nn.ModuleList(
537
+ [nn.Linear(embed_dim, embed_dim)] for _ in range(num_hidden_layers - 1)
538
+ )
539
+ )
540
+ self.linear_out = nn.Linear(embed_dim, dim_out)
541
+
542
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
543
+ res = x # noqa: F841
544
+ x = F.gelu(x, approximate="tanh")
545
+ for layer in self.linear_layers:
546
+ x = layer(x)
547
+ x = F.gelu(x, approximate="tanh")
548
+ out = self.linear_out(x)
549
+ return out
550
+
551
+
552
+ @dataclass
553
+ class sCTConfig(PretrainedConfig): # noqa: N801
554
+ model_type = "sCT"
555
+
556
+ def __init__(self, **kwargs): # type: ignore
557
+ self.alphabet_size = kwargs.get("alphabet_size", 7)
558
+ self.pad_token_id = kwargs.get("pad_token_id", 5)
559
+ self.mask_token_id = kwargs.get("mask_token_id", 6)
560
+ self.cell_len = kwargs.get("cell_len", 19968)
561
+
562
+ self.num_downsamples = kwargs.get("num_downsamples", 8)
563
+ self.attention_heads = kwargs.get("attention_heads", 16)
564
+ self.key_size = kwargs.get("key_size", None)
565
+ self.token_embed_dim = kwargs.get("token_embed_dim", 16)
566
+
567
+ self.embed_dim = kwargs.get("embed_dim", 1024)
568
+ self.ffn_embed_dim = kwargs.get("ffn_embed_dim", 2048)
569
+ self.num_layers = kwargs.get("num_layers", 4)
570
+ self.layer_norm_eps = kwargs.get("layer_norm_eps", 1e-5)
571
+ self.interpolation_method = kwargs.get("interpolation_method", "nearest")
572
+
573
+ # bad hack to satisfy cellnt_celltype_annotation.py:312
574
+ self.max_positions: int = kwargs.get("max_positions", 20480)
575
+ self.num_cells: int = kwargs.get("num_cells", 50)
576
+ self.num_hidden_layers_head: int = kwargs.get("num_hidden_layers_head", 1)
577
+
578
+ self.use_skip_connection: bool = kwargs.get("use_skip_connection", True)
579
+
580
+ # logging
581
+ self.use_gradient_checkpointing: bool = False
582
+
583
+ # return
584
+ self.embeddings_layers_to_save: Tuple[int, ...] = kwargs.get(
585
+ "embeddings_layers_to_save", ()
586
+ )
587
+ self.attention_maps_to_save: list[tuple[int, int]] = kwargs.get(
588
+ "attention_maps_to_save", []
589
+ )
590
+
591
+ # Spatial info configuration
592
+ self.use_spatial_information: bool = kwargs.get(
593
+ "use_spatial_information", False
594
+ )
595
+ self.num_scales: int = kwargs.get("num_scales", 10)
596
+ self.sigma_min: float = kwargs.get("sigma_min", 1.0)
597
+ self.sigma_max: float = kwargs.get("sigma_max", 10.0)
598
+
599
+ super().__init__(**kwargs)
600
+
601
+ def __post_init__(self) -> None: # type: ignore # noqa: N807
602
+ """
603
+ Checks that the given values are compatible.
604
+ """
605
+ if self.key_size is None:
606
+ if not self.embed_dim % self.attention_heads == 0:
607
+ raise ValueError(
608
+ f"When no key size is provided, the embedding dimension"
609
+ f"should be divisible by the number of heads, however "
610
+ f"provided embedding dimension is {self.embed_dim} and "
611
+ f"the number of heads is {self.attention_heads}."
612
+ )
613
+ self.key_size = self.embed_dim // self.attention_heads
614
+
615
+
616
+ class sCT(PreTrainedModel): # noqa: N801
617
+ config_class = sCTConfig
618
+
619
+ def __init__(self, config: sCTConfig):
620
+ # super().__init__(config)
621
+ super().__init__(config=config)
622
+ if config.use_spatial_information:
623
+ self.spatial_embed_layer = SpatialEncoding(
624
+ embed_dim=config.token_embed_dim,
625
+ num_scales=config.num_scales,
626
+ sigma_min=config.sigma_min,
627
+ sigma_max=config.sigma_max,
628
+ )
629
+ self.cell_len = config.cell_len
630
+
631
+ self.token_embed = nn.Embedding(config.alphabet_size, config.token_embed_dim)
632
+
633
+ attention_maps_to_save = config.attention_maps_to_save
634
+ self._attention_layers_to_save = list({t[0] for t in attention_maps_to_save})
635
+
636
+ self._attention_maps_per_layer_to_save = {
637
+ layer: [t[1] for t in attention_maps_to_save if t[0] == layer]
638
+ for layer in self._attention_layers_to_save
639
+ }
640
+
641
+ max_layer = max(self._attention_layers_to_save + [0])
642
+ if max_layer > config.num_layers:
643
+ raise ValueError(
644
+ f"You are requiring attention maps for layer {max_layer}, "
645
+ f"while the model has {config.num_layers} layers only."
646
+ )
647
+
648
+ filter_list = np.linspace(
649
+ config.token_embed_dim,
650
+ config.embed_dim,
651
+ config.num_downsamples + 1,
652
+ )
653
+
654
+ filter_list = np.ceil(filter_list / 32) * 32
655
+ filter_list = filter_list.astype(int).tolist()
656
+
657
+ self._filter_list = filter_list
658
+ self._rotary_embedding_config = RotaryEmbeddingConfig(rescaling_factor=None)
659
+
660
+ self.stem_conv = nn.Sequential(
661
+ nn.Conv1d(
662
+ in_channels=config.token_embed_dim,
663
+ out_channels=config.token_embed_dim,
664
+ kernel_size=15,
665
+ padding="same",
666
+ ),
667
+ nn.GELU(approximate="tanh"),
668
+ )
669
+ downsampled_seq_lens = [
670
+ self.cell_len // (2**i) for i in range(len(filter_list) - 1)
671
+ ]
672
+
673
+ self.conv_tower = nn.ModuleList(
674
+ [
675
+ ConvTowerBlock(
676
+ dim_in=self._filter_list[i],
677
+ dim_out=self._filter_list[i + 1],
678
+ kernel_size=5,
679
+ seq_len=seq_len,
680
+ num_cells=config.num_cells,
681
+ )
682
+ for i, seq_len in zip(range(len(filter_list) - 1), downsampled_seq_lens)
683
+ ]
684
+ )
685
+
686
+ self.deconv_tower = nn.ModuleList(
687
+ [
688
+ DeConvTowerBlock(
689
+ dim_in=filter_list[-1 - i],
690
+ dim_out=filter_list[-1 - i - 1],
691
+ kernel_size=5,
692
+ stride=2,
693
+ seq_len=seq_len // 2,
694
+ num_cells=config.num_cells,
695
+ )
696
+ for i, seq_len in zip(
697
+ range(len(filter_list) - 1), downsampled_seq_lens[::-1]
698
+ )
699
+ ]
700
+ )
701
+ self.transformer_layers = nn.ModuleList(
702
+ [
703
+ SelfAttentionBlock(
704
+ num_heads=config.attention_heads,
705
+ embed_dim=config.embed_dim,
706
+ ffn_embed_dim=config.ffn_embed_dim,
707
+ key_size=config.key_size,
708
+ add_bias_kv=False,
709
+ add_bias_fnn=False,
710
+ ffn_activation_name="swish",
711
+ use_glu_in_ffn=True,
712
+ layer_norm_eps=1e-5, # this is the default haiku value
713
+ pre_layer_norm=True,
714
+ name=f"attention_layer_{layer_idx}",
715
+ rotary_embedding_config=self._rotary_embedding_config,
716
+ )
717
+ for layer_idx in range(config.num_layers)
718
+ ]
719
+ )
720
+
721
+ self.lm_head = LMHead(
722
+ dim_in=config.token_embed_dim,
723
+ embed_dim=config.embed_dim,
724
+ dim_out=config.alphabet_size,
725
+ num_hidden_layers=config.num_hidden_layers_head,
726
+ )
727
+
728
+ def forward(self, input_ids: torch.Tensor) -> dict[str, torch.Tensor]:
729
+ outs = {}
730
+ embeddings = self.token_embed(input_ids)
731
+ x = embeddings.permute(0, 2, 1)
732
+ x = self.stem_conv(x)
733
+ residuals = []
734
+ for _idx, conv_block in enumerate(self.conv_tower):
735
+ x, res = conv_block(x)
736
+ residuals.append(res)
737
+ residuals = residuals[::-1]
738
+ x = x.permute(0, 2, 1)
739
+
740
+ for layer_idx, transformer in enumerate(self.transformer_layers):
741
+ output = transformer(x)
742
+ x = output["embeddings"]
743
+ if (layer_idx + 1) in self.config.embeddings_layers_to_save:
744
+ outs[f"embeddings_{(layer_idx + 1)}"] = output["embeddings"]
745
+ if (layer_idx + 1) in self._attention_layers_to_save:
746
+ for map_number in self._attention_maps_per_layer_to_save[layer_idx + 1]:
747
+ dkey = f"attention_map_layer_{layer_idx + 1}_number_{map_number}"
748
+ outs[dkey] = output["attention_weights"][:, map_number + 1]
749
+ x = x.permute(0, 2, 1)
750
+ for deconv_block, res in zip(self.deconv_tower, residuals):
751
+ x = deconv_block(x, res)
752
+ x = x.permute(0, 2, 1)
753
+ logits = self.lm_head(x)
754
+ outs["logits"] = logits
755
+
756
+ return outs