--- license: apache-2.0 language: - es base_model: - PlanTL-GOB-ES/roberta-base-biomedical-clinical-es tags: - medical - spanish - bi-encoder - entity-linking - sapbert - umls - snomed-ct --- # **ClinLinker** ## Model Description ClinLinker is a state-of-the-art bi-encoder model for medical entity linking (MEL) in Spanish, optimized for clinical domain tasks. It enriches concept representations by incorporating synonyms from the UMLS and SNOMED-CT ontologies. The model was trained with a contrastive-learning strategy using hard negative mining and multi-similarity loss. ## 💡 Intended Use - **Domain**: Spanish Clinical NLP - **Tasks**: Entity linking (diseases, symptoms, procedures) to SNOMED-CT - **Evaluated On**: DisTEMIST, MedProcNER, SympTEMIST - **Users**: Researchers and practitioners working in clinical NLP ## 📈 Performance Summary (Top-25 Accuracy) | Model | DisTEMIST | MedProcNER | SympTEMIST | |--------------------|-----------|------------|------------| | **ClinLinker** | **0.845** | **0.898** | **0.909** | | ClinLinker-KB-P | 0.853 | 0.891 | 0.918 | | ClinLinker-KB-GP | 0.864 | 0.901 | 0.922 | | SapBERT-XLM-R-large| 0.800 | 0.850 | 0.827 | | RoBERTa biomedical | 0.600 | 0.668 | 0.609 | *Results correspond to the cleaned gold-standard version (no "NO CODE" or "COMPOSITE").* ## 🧪 Usage ```python from transformers import AutoModel, AutoTokenizer import torch model = AutoModel.from_pretrained("ICB-UMA/ClinLinker") tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker") mention = "insuficiencia renal aguda" inputs = tokenizer(mention, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) embedding = outputs.last_hidden_state[:, 0, :] print(embedding.shape) ``` For scalable retrieval, use [Faiss](https://github.com/facebookresearch/faiss) or the [`FaissEncoder`](https://github.com/ICB-UMA/KnowledgeGraph) class. ## ⚠️ Limitations - The model is optimized for Spanish clinical data and may underperform outside this domain. - Expert validation is advised in critical applications. ## 📚 Citation > Gallego, F., López-García, G., Gasco-Sánchez, L., Krallinger, M., Veredas, F.J. (2024). ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish. In: Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2024. Lecture Notes in Computer Science, vol 14836. Springer, Cham. https://doi.org/10.1007/978-3-031-63775-9_19 ## Authors Fernando Gallego, Guillermo López-García, Luis Gasco-Sánchez, Martin Krallinger, Francisco J Veredas