--- license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-children-ft results: [] --- # whisper-large-children-ft This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8308 - Wer: 0.7942 - Cer: 0.6731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.9663 | 0.2 | 1000 | 0.9738 | 1.1973 | 1.0267 | | 0.8767 | 0.4 | 2000 | 0.9192 | 0.9408 | 0.8104 | | 0.8277 | 0.59 | 3000 | 0.8746 | 0.8052 | 0.6862 | | 0.6799 | 0.79 | 4000 | 0.8483 | 0.8404 | 0.7421 | | 0.6919 | 0.99 | 5000 | 0.8308 | 0.7942 | 0.6731 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.1+cu118 - Datasets 3.5.1 - Tokenizers 0.15.2