# app.py (for a Hugging Face Space using Gradio) import gradio as gr import torch import pytorch_lightning as pl from timm import create_model import torch.nn as nn from box import Box import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 import cv2 import pickle from PIL import Image import numpy as np import os import requests # For fetching funny cat GIFs from huggingface_hub import hf_hub_download # --- Re-use your model definition and loading functions --- # (This part would be similar to your inference.py) HF_USERNAME = "Hajorda" # Or the username of the model owner HF_MODEL_NAME = "keduClasifier" REPO_ID = f"{HF_USERNAME}/{HF_MODEL_NAME}" cfg_dict_for_inference = { 'model_name': 'swin_tiny_patch4_window7_224', # Match training 'dropout_backbone': 0.1, # Match training 'dropout_fc': 0.2, # Match training 'img_size': (224, 224), 'num_classes': 37, # IMPORTANT: This must be correct for your trained model } cfg_inference = Box(cfg_dict_for_inference) class PetBreedModel(pl.LightningModule): # Paste your PetBreedModel class here def __init__(self, cfg: Box): super().__init__() self.cfg = cfg self.backbone = create_model( self.cfg.model_name, pretrained=False, num_classes=0, in_chans=3, drop_rate=self.cfg.dropout_backbone ) h, w = self.cfg.img_size dummy_input = torch.randn(1, 3, h, w) with torch.no_grad(): num_features = self.backbone(dummy_input).shape[-1] self.fc = nn.Sequential( nn.Linear(num_features, num_features // 2), nn.ReLU(), nn.Dropout(self.cfg.dropout_fc), nn.Linear(num_features // 2, self.cfg.num_classes) ) def forward(self, x): features = self.backbone(x); output = self.fc(features) return output def load_model_from_hf_for_space(repo_id=REPO_ID, ckpt_filename="pytorch_model.ckpt"): model_path = hf_hub_download(repo_id=repo_id, filename=ckpt_filename) # Important: Ensure cfg_inference is correctly defined with num_classes if cfg_inference.num_classes is None: raise ValueError("num_classes must be set in cfg_inference to load the model for Gradio.") loaded_model = PetBreedModel.load_from_checkpoint(model_path, cfg=cfg_inference, strict=False) loaded_model.eval() return loaded_model def load_label_encoder_from_hf_for_space(repo_id=REPO_ID, le_filename="label_encoder.pkl"): le_path = hf_hub_download(repo_id=repo_id, filename=le_filename) with open(le_path, 'rb') as f: label_encoder = pickle.load(f) return label_encoder # Load model and encoder once when the app starts model = load_model_from_hf_for_space() label_encoder = load_label_encoder_from_hf_for_space() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # --- Funny elements --- funny_cat_keywords = ["funny cat", "silly cat", "cat meme", "derp cat"] GIPHY_API_KEY = "YOUR_GIPHY_API_KEY" # Optional: For more variety, get a Giphy API key def get_funny_cat_gif(breed_name): try: # Use a public API if you don't have a Giphy key, or a simpler source # For example, a predefined list of GIFs predefined_gifs = { "abyssinian": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExaWN4bDNzNWVzM2VqNHE4Ym5zN2ZzZHF0Zzh0bGRqZzRjMnhsZW5pZCZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/3oriO0OEd9QIDdllqo/giphy.gif", "siamese": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExa3g0dHZtZmRncWN0cnZkNnVnMGRtYjN2ajZ2d3o1cHZtaW50ZHQ5ayZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/ICOgUNjpvO0PC/giphy.gif", "default": "https://media.giphy.com/media/v1.Y2lkPTc5MGI3NjExNWMwNnU4NW9nZTV5c3Z0eThsOHhsOWN0Nnh0a3VzbjFxeGU0bjFuNiZlcD12MV9pbnRlcm5hbF9naWZfYnlfaWQmY3Q9Zw/BzyTuYCmvSORqs1ABM/giphy.gif" } return predefined_gifs.get(breed_name.lower().replace(" ", "_"), predefined_gifs["default"]) # If using Giphy API: # search_term = f"{breed_name} {random.choice(funny_cat_keywords)}" # params = {'api_key': GIPHY_API_KEY, 'q': search_term, 'limit': 1, 'rating': 'g'} # response = requests.get("http://api.giphy.com/v1/gifs/search", params=params) # response.raise_for_status() # return response.json()['data'][0]['images']['original']['url'] except Exception as e: print(f"Error fetching GIF: {e}") return predefined_gifs["default"] # Fallback # --- Gradio Interface Function --- def classify_cat_breed(image_input): # Gradio provides image as a NumPy array img_rgb = cv2.cvtColor(image_input, cv2.COLOR_BGR2RGB) # Ensure it's RGB if needed h, w = cfg_inference.img_size transforms_gradio = A.Compose([ A.Resize(height=h, width=w), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2(), ]) input_tensor = transforms_gradio(image=img_rgb)['image'].unsqueeze(0).to(device) with torch.no_grad(): logits = model(input_tensor) probabilities = torch.softmax(logits, dim=1) # Get top N predictions if you want # top_probs, top_indices = torch.topk(probabilities, 3, dim=1) # For single prediction: confidence, predicted_idx = torch.max(probabilities, dim=1) predicted_breed_id = predicted_idx.item() predicted_breed_name = label_encoder.inverse_transform([predicted_breed_id])[0] conf_score = confidence.item() # Funny message and GIF funny_message = f"I'm {conf_score*100:.1f}% sure this adorable furball is a {predicted_breed_name}! What a purrfect specimen!" if conf_score < 0.7: funny_message += " ...Or maybe it's a new, super-rare breed only I can see. 😉" gif_url = get_funny_cat_gif(predicted_breed_name) # Gradio expects a dictionary for multiple outputs if you name them # Or a tuple if you don't name them in gr.Interface outputs return ( f"{predicted_breed_name} (Confidence: {conf_score*100:.2f}%)", funny_message, gif_url # Gradio can display images/GIFs from URLs ) # --- Define the Gradio Interface --- title = "😸 Purrfect Breed Guesser 3000 😼" description = "Upload a picture of a cat, and I'll (hilariously) try to guess its breed! Powered by AI and a bit of cat-titude." article = "
Model based on Swin Transformer, fine-tuned on the Oxford-IIIT Pet Dataset. Model Card
" iface = gr.Interface( fn=classify_cat_breed, inputs=gr.Image(type="numpy", label="Upload Cat Pic! 📸"), outputs=[ gr.Textbox(label="🧐 My Guess Is..."), gr.Textbox(label="💬 My Deep Thoughts..."), gr.Image(type="filepath", label="🎉 Celebration GIF! 🎉") # 'filepath' for URLs ], title=title, description=description, article=article, examples=[["example_cat1.jpg"], ["example_cat2.jpg"]], # Add paths to example images in your Space repo theme=gr.themes.Soft() # Or try other themes! ) if __name__ == "__main__": iface.launch()