Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- image-classification
|
5 |
+
- pytorch
|
6 |
+
- pet-breeds
|
7 |
+
- oxford-iiit-pet-dataset
|
8 |
+
- swin-transformer
|
9 |
+
widget:
|
10 |
+
# You might need to configure a Space for the widget to work effectively
|
11 |
+
# Or provide a link to your Gradio Space if you create one
|
12 |
+
- example_url: "https://huggingface.co/datasets/huggingface/cats-image/resolve/main/cats-300.jpg"
|
13 |
+
---
|
14 |
+
# KEDU Breed Classifier (swin_tiny_patch4_window7_224)
|
15 |
+
|
16 |
+
This model classifies pet breeds based on the Oxford-IIIT Pet Dataset.
|
17 |
+
Model architecture: `swin_tiny_patch4_window7_224`.
|
18 |
+
|
19 |
+
## How to Use
|
20 |
+
|
21 |
+
1. **Install dependencies:**
|
22 |
+
```bash
|
23 |
+
pip install torch torchvision timm pytorch-lightning albumentations opencv-python-headless scikit-learn Pillow huggingface_hub python-box PyYAML
|
24 |
+
```
|
25 |
+
|
26 |
+
2. **Download `inference.py`, `pytorch_model.ckpt`, and `label_encoder.pkl` from this repository.**
|
27 |
+
|
28 |
+
3. **Run inference:**
|
29 |
+
```python
|
30 |
+
from inference import load_model_from_hf, load_label_encoder_from_hf, predict_breed
|
31 |
+
|
32 |
+
model = load_model_from_hf(repo_id="Hajorda/keduClassifier")
|
33 |
+
label_encoder = load_label_encoder_from_hf(repo_id="Hajorda/keduClassifier")
|
34 |
+
|
35 |
+
image_path = "path/to/your/pet_image.jpg" # Replace with your image path
|
36 |
+
predicted_breed, confidence = predict_breed(image_path, model, label_encoder)
|
37 |
+
print(f"Predicted: {predicted_breed}, Confidence: {confidence:.4f}")
|
38 |
+
```
|
39 |
+
|
40 |
+
## Model Details
|
41 |
+
- **Dataset:** Oxford-IIIT Pet Dataset
|
42 |
+
- **Number of Classes:** 37
|
43 |
+
- **Image Size:** (224, 224)
|
44 |
+
|
45 |
+
## Performance
|
46 |
+
- **Validation Accuracy:** 93.40%
|
47 |
+
(Note: This is the validation accuracy from the training run.)
|
48 |
+
|
49 |
+
## Author
|
50 |
+
Hajorda
|